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ABSTRACT

THEORETICAL AND COMPUTATIONAL MODELING OF
CONTAMINANT REMOVAL IN POROUS WATER FILTERS

by

Aman Raizada

The University of Wisconsin-Milwaukee, 2021
Under the Supervision of Professor Krishna M. Pillai

and Co-supervision of Dr. Marcia Silva

Contaminant transport in porous media is a well-researched problem across many

scientific and engineering disciplines, including soil sciences, groundwater hydrology,

chemical engineering, and environmental engineering. In this thesis, we attempt to

tackle this multiscale transport problem using the upscaling approach, which leads to

the development of macroscale models while considering a porous medium as an

averaged continuum system.

First, we describe a volume averaging-based method for estimating flow

permeability in porous media. This numerical method overcomes several challenges

faced during the application of traditional permeability estimation techniques, and is

able to accurately provide the complete permeability tensor of a porous sample in a

single simulation. Several anisotropic unit cells are created in two- and

three-dimensions based on three different parameters: (1) unit-cell size, (2) particle

shape, and (3) aspect ratio of the particles inside the unit cells. The results from the

volume averaging-based method show good agreement on comparison with the

conventional Stokes-Darcy flow technique for the two- and three-dimensional models.

We also find that the proposed method provides much faster results than the
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Stokes-Darcy flow technique for 3-D unit-cell geometries.

Next, the cartridges used in commercial water filters are mostly created by packing

particles or beads that can be assumed to be of mono-modal size distribution and thus

create single-scale porous media. In this thesis, we employ the volume averaging

method to upscale the phenomenon of solute transport (which include both diffusion

and advection) accompanied with adsorption in such homogeneous porous media. Our

novel contribution in this research is the development of a micro-macro coupling

between the microscopic and macroscopic length scales, which forms the basis of our

macroscale models to reflect the macroscopic behaviour of the system. Two versions of

the macroscale models are proposed: (a) complete Volume Averaged Model (VAMc) and

(b) simplified Volume Averaged Model (VAMs), which involve two effective transfer

coefficients, namely, the total dispersion tensor and the adsorption-induced vector.

Further, in order to investigate one of the critical design parameters of a porous

water filter, the ‘hydraulic detention time’ of the polluted water in the filter, we carry

out an extensive numerical investigation of the proposed macroscale models. For this,

first we nondimensionalize the pore-scale and macroscale models, which leads to

surfacing of two important dimensionless numbers, namely, the Damköhler number and

the Péclet number. Next, we develop a 2-D geometry of porous media made up of a

chain of 100 identical unit cells for testing the above-mentioned models. The numerical

simulations corresponding to the dimensionless pore-scale model, which are referred to

as the Direct Numerical Simulation (DNS), and the dimensionless macroscale models,

which are referred to as the Volume Averaged Model (VAM), are conducted on the

chain-of-unit-cells geometry. The intrinsic average concentration predictions from the

macroscale models display excellent results on comparison with the pore-scale (or DNS)

outcomes. We also assess the importance of large fluid-solid interfacial area inherent in

porous adsorbents by varying the porosity and number of particles inside the

artificially-prepared porous-media models. The total dispersion tensor coefficient is

iii
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validated and found to be in excellent agreement with the literature. Our findings

reveal that an increase in the interfacial area of the models leads to higher effective

transfer coefficient values.

Last, we perform adsorption experiments in an effort to evaluate the effectiveness of

the proposed macroscale models. For this, three trials of column-flow experiment are

conducted using an adsorbent made up of functionalized zeolite material to remove

phosphorus from synthetically prepared influent. Micro-CT scans of zeolite material are

used to develop a unit-cell representative of the pore space inside the actual adsorbent

medium. The numerical simulations on the unit-cell provide realistic effective transfer

coefficient values; however, a large difference between the concentration predictions

from theory and experimental results is noted. The lack of adherence to the time-scale

constraints is assessed to be the primary reason behind this discrepancy. We offer

different recommendations in order to improve the experiments and accurately gauge

the effectiveness of the macroscale models.

Overall, these models have the potential to improve the state-of-the-art technologies

for modeling contaminant transport in porous water filters by providing useful

recommendations based on numerical simulations, and may be used as a tool for the

optimization of the design of porous water filters.
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NOMENCLATURE

Symbol1 Description Unit

A Damköhler number (or dimensionless adsorption isotherm) dimensionless

Aβσ interfacial area between the β and σ phases in the REV m2

A∗βσ = Aβσ/l
2, interfacial area between the β and σ phases in

the REV

dimensionless

aβσ the β − σ interfacial area per unit volume m−1

bβ closure variable (vector) used to describe the distribution

of c̃β

m

b∗β = bβ/l or bβ/(l Pe), closure variable (vector) used to

describe the distribution of c̃β

dimensionless

cad surface concentration on the β − σ interface kg mol/m2

cβ point concentration of species X in the β-phase kg mol/m3

c∗β = cβ/cin, point concentration of species X in the β-phase dimensionless

c̃β = cβ − 〈cβ〉β, spatial deviation in concentration of the β-

phase

kg mol/m3

〈cβ〉β intrinsic phase average concentration in the β-phase kg mol/m3

〈cβ〉βσ area-averaged concentration at the β − σ interface kg mol/m3

cin constant inlet concentration of species X in the β-phase kg mol/m3

C solute concentration used in the analytical solution for a

finite domain

kg mol/m3

C0 reference concentration used in the analytical solution for a

finite domain

kg mol/m3

Ce equilibrium concentration of phosphorus solution mg/L

Ci initial concentration of phosphorus solution mg/L

D0 constant dispersion coefficient used in the analytical

solution for a finite domain

m2/s
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Da convection transport based Damköhler number dimensionless

Dβ molecular diffusivity of the β-phase m2/s

Dβ hydrodynamic dispersion tensor m2/s

D∗β total dispersion tensor m2/s

D∗∗β = D∗β/Dβ, ratio of total dispersion tensor to molecular

diffusivity

dimensionless

Deff effective diffusivity tensor m2/s

g acceleration due to gravity m/s2

h hydrostatic pressure head m

I identity tensor dimensionless

K permeability of the porous medium m2

Kd linear equilibrium partitioning coefficient L/kg

Keq equilibrium coefficient for the linear isotherm (or the

distribution coefficient)

m

l length of the unit-cell m

lσ characteristic length-scale associated with the average

particle size (solid phase)

m

lβ characteristic length-scale associated with the pore size

(fluid phase)

m

lc̃β characteristic length-scale for variation in c̃β m

l〈cβ〉β characteristic length-scale for variation in 〈cβ〉β m

l ∂〈cβ〉β
∂t

characteristic length-scale for variation in ∂〈cβ〉β
∂t

m

lsβ characteristic length-scale for variation in sβ m

l〈vβ〉β characteristic length-scale for variation in 〈vβ〉β m

lεβ characteristic length-scale for variation in εβ m

li lattice vector corresponding to direction i for the repetition

of unit cells

m
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L characteristic length associated with the macroscale m

m mass of adsorbent sample g

nβσ unit normal directed from β-phase to σ-phase

N = L/l, number of unit cells in the macroscale model

P = P0 − ρβgh, hydrodynamic fluid pressure in the β-phase N/m2

P0 total fluid pressure N/m2

P ∗ = l P/(µ vc), hydrodynamic fluid pressure in the β-phase dimensionless

P ∗in = N , hydrodynamic fluid pressure in the β-phase at the

inlet of the DNS model

dimensionless

||∇〈P 〉β|| average macroscopic pressure gradient applied across the

porous domain

N/m2

Pe cell Péclet number dimensionless

Pep particle Péclet number dimensionless

qe adsorption capacity at equilibrium mg/g

ro size of the REV m

r position vector m

sβ closure variable (scalar) used to describe the distribution of

c̃β

s/m

s∗β = sβ/(l/Dβ), closure variable (scalar) used to describe the

distribution of c̃β

dimensionless

t∗ = tDβ/l
2, diffusion time variable used in the dimensionless

pore-scale model

dimensionless

t∗conv = t vc/l, convection time variable used in the dimensionless

pore-scale model

dimensionless

T ∗ = tDβ/L
2, diffusion time variable used in the dimensionless

upscaled models

dimensionless
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T ∗conv = t vc/L, convection time variable used in the dimensionless

upscaled models

dimensionless

u0 uniform flow velocity used in the analytical solution in the

finite domain

m/s

uβ adsorption-induced vector in the β-phase dimensionless

vβ point velocity of the β-phase m/s

v∗β = vβ/vc, point velocity of the β-phase dimensionless

〈vβ〉β intrinsic phase average velocity of the β-phase m/s

ṽβ = vβ − 〈vβ〉β, spatial deviation in velocity of the β-phase m/s

ṽ∗β = ṽβ/vc, spatial deviation in velocity of the β-phase dimensionless

||〈v∗β〉β|| = ||〈vβ〉β||/vc, magnitude of the dimensionless intrinsic

phase average velocity

dimensionless

vc characteristic velocity of the β-phase m/s

V volume of the REV m3

Vβ volume of the β-phase within an REV m3

V ∗β = Vβ/l
3, volume of the β-phase within an REV dimensionless

Vl volume of phosphorus solution L

w velocity of the β − σ interface m/s

x∗ = x/l, x-direction coordinate used in the dimensionless

pore-scale model

dimensionless

x0 length of the finite domain used in the analytical solution m

X∗ = x/L, x-direction coordinate used in the dimensionless

upscaled models

dimensionless

y∗ = y/l, y-direction coordinate used in the dimensionless

pore-scale model

dimensionless

β fluid phase in the homogeneous porous medium

εβ volume fraction of the β-phase dimensionless
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µ fluid dynamic viscosity N·s/m2

φβ generic variable of the β-phase

ρβ fluid density kg/m3

σ solid phase in the homogeneous porous medium

τ characteristic time for changes in c̃β within the REV s

∇ differential operator operating at the length-scale l

∇∗ = ∇ l, dimensionless differential operator operating at the

length-scale l

∇L differential operator operating at the length-scale L

∇∗L = ∇L L, dimensionless differential operator operating at the

length-scale L

1List of symbols used in Chapters 3 to 5 and Appendices C to E.
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CHAPTER 1

Introduction

1.1 Motivation and Objectives

Porous media studies surpass mathematics, science, and engineering. This broad and

complex interdisciplinary subject is of immense theoretical and practical interest across

numerous fields, such as composites manufacturing, chemical engineering, ground water

hydrology, petroleum engineering, and soil mechanics [1]. It is crucial to study the physics

of fluid flow through porous media in such scientific and engineering disciplines. However,

the fundamental theories to explain the microscopic phenomena face a daunting challenge

in precisely capturing the effect of extremely complicated solid surface geometries on fluid

flow inside the porous domain. In this respect, the well-known experiment-based Darcy’s

law [2], mathematical analytical models of porous flows [3, 4] and various upscaling

techniques [5] provide the tools to develop and solve the microscopic problem at a

macroscopic scale.

An integral part of the theoretical and applied research in flow, heat, and mass

transfer in porous media involves studying the effect of porosity variation and determining

the anisotropic permeability and dispersion tensors [6]. These critical factors govern the

fluid and mass transport in any given porous medium, which are generally multiphase,

multi-species, non-laminar, and non-isothermal flows. Moreover, the medium is often

anisotropic and undergoes physical transformation when subjected to external fields,

such as stress, electric, gravitational, temperature gradients, among others. Hence, in

order to develop accurate and efficient permeability or dispersion prediction models, it is

important to carefully analyze and incorporate the pore-scale effects resulting due to the
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irregular-shaped solid particles into the macroscopically measurable flow quantities.

Nowadays, an accurate knowledge of permeability distribution is a key parameter in

dealing with advanced technological applications, such as energy harvesting devices [7],

microfluidics for medical diagnosis [8], oil recovery [9], liquid composite molding [10,11],

and contaminant filtration [12–14]. In such relatively slow moving flows, it is possible to

determine the velocity field using the steady-state Navier-Stokes equations, and then use

the average flow velocity with the applied pressure gradient to estimate the permeability

of the medium. The scalar approximations in such cases may provide useful order

of magnitude estimates of the permeability. However, when dealing with anisotropic

porous media, more often than not they are inaccurate [15–18]. One of the solutions

offered to solve this problem is employing the channel flow experiments approach. Here,

three experiments must be conducted in three different orientations to determine the

two-dimensional permeability tensor [19]. However, this estimation process requires six

experiments in six different orientations when practised in three dimensions, and thus

becomes quite complicated [20]. This difficult situation is even further complicated if the

principal permeability directions are a priori unknown. These directions are easy to figure

out in simple systems such as a bank of parallel aligned fibers [21,22]. However, for most

real systems (with either the fibers distributed randomly, or the fibers in the form of tows

of continuous filaments woven or stitched in intricate repetitive patterns), such directions

are not obvious. Even in filtration materials such as polyurethane foam based porous

adsorbents [12], where the cell structure is not necessarily consistent, the use of traditional

methods to evaluate the flow parameters related to permeability have limited capabilities.

Hence, based on the importance of finding permeability of a medium, it is critical to

develop a technique which not only facilitates in obtaining accurate permeability tensors,

but is also simple to implement and time-efficient.

Next, among various water treatment technologies available, the adsorption-based

filtration technique involving porous media is most widely employed because it is cost-

2



www.manaraa.com

effective, highly efficient, and easy to operate [23,24]. For this reason, the need to develop

accurate mathematical models for providing deep insight into the adsorption process,

which involves capturing of dissolved metal ions such as As(III) and As(V) onto the active

surface of the solid particles, is a research priority. Contaminant transport in porous

media is a well-researched problem across many scientific and engineering disciplines,

including soil sciences, groundwater hydrology, chemical engineering, and environmental

engineering. In general, this multiscale transport phenomenon can be studied by the

use of either the pore-scale or the Darcy-scale models. Although significant strides

have been made both in pore-scale modeling and computational capabilities [25, 26],

the complex pore microstructures still pose a computational challenge in applying the

pore-scale simulations in a real-world porous medium [27]. Thus, there is a need to work

on an efficient approach which leads to the development of accurate macroscale models

while considering a porous medium as an averaged continuum system, and thereby reduce

the computational complexities involved in the models.

Hence, in response to the above-mentioned problems, this thesis focuses on proposing

a novel contaminant transport modeling method based on the volume averaging theory

in porous media. Additionally, it also discusses the Whitaker’s closure formulation based

method for estimating flow permeability in porous media.

These translate into the following objectives for the thesis:

1. Development of a permeability estimation method for porous media:

Traditional permeability estimation techniques such as the Stokes-Darcy flow meth-

od [19] require three channel flow experiments in two-dimensions and six experiments

in three-dimensions (very difficult to perform) for determining the complete permea-

bility tensor of a porous medium. Hence, our goal is to find permeability using a

closure formulation method which is derived from the volume averaging theory, and

compare it with the results obtained from the Stokes-Darcy flow method. Chapter

2 of the thesis is focused on achieving this goal.

3
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2. Modeling contaminant transport in porous media: By modeling the contam-

inant transport problem in porous media using the volume averaging theory, our

goal is to propose macroscale models that can accurately describe the macroscopic

behaviour of the system while accounting for the pore microstructure and adsorption

reactions occurring at the microscopic scale. Chapter 3 of the thesis explains the

theoretical developments involved in the formulation of these macroscale models.

3. Validation of the proposed macroscale models: After developing the macros-

cale models, our goal is to validate the models on the basis of a numerical investigat-

ion. Also, we conduct adsorption experiments, and draw a comparison between

the concentration predictions from the proposed models and experimental results.

Chapters 4 and 5 of the thesis are focused on the numerical validation of the

macroscale models and comparison with the experiments, respectively.

1.2 Organization

The thesis has been written such that Chapter 2 can be read independent of others.

Next, Chapters 3 to 5 are devoted to the common subject of macroscale modeling, and

explain the theoretical, numerical, and experimental research, in that order. Overall,

the document is organized as follows. Chapter 2 discusses a method for estimating flow

permeability in porous media. Chapter 3 focuses on the development of volume-averaged

models for contaminant transport in porous media. Chapter 4 is based on a numerical

investigation of the proposed volume-averaged models. Chapter 5 presents a comparison

between the predictions from the volume-averaged models and experiments.

4
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CHAPTER 2

Permeability Estimation of Porous Media

2.1 Literature Review

The permeability of a porous medium is an important physical property that is employed

to determine the flow field(s) using Darcy’s law from the distributions of liquid pressure(s)

during single- and multi-phase flows in porous media. Development of experimental,

numerical, and theoretical methods to estimate the permeability is a field of study in

itself [28–36], and finds applications in several areas of engineering and geosciences. The

prediction of permeability of anisotropic porous media (e.g., a bed of packed aligned

fibers) is relatively more challenging compared to that in the isotropic porous media

(e.g., soil, sand, iron filings, etc.) because of the more complex representation (in the

form of a 2nd order tensor) in the former [1]. In this context, it can be pointed out that

porous water filters sometimes use fibers or elongated particulates (created through an

extrusion-like manufacturing process). This may cause the medium to be anisotropic in

nature, and therefore lead to permeability to be in the form of a tensor. Due to this,

the velocity distribution and/or pressure distributions could result into three-dimensional

forms in a cylindrical filter, which traditionally, is treated as a 1-D domain due to the

isotropic nature of porous medium created in the filter. Hence, the work presented in this

chapter is relevant in the context of modeling transport in such anisotropic water-filters.

The field of process modeling of composite materials, especially that of the polymer

matrix composites, has been a significant contributor to the research of permeability

estimation because of the use of fibers as reinforcements. The permeability is used

for conducting mold-filling simulations to optimize mold design in the liquid composite
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molding (LCM) processes including the resin transfer molding (RTM) and the vacuum-

assisted resin transfer molding (VARTM) [20, 37–42]. Though models are available for

analytically predicting permeability for porous media made of fibers arranged in regular

geometrical patterns [29–33, 43–51], more often than not they are inaccurate [15–18,

52]. This happens because of several factors including complex 3-D arrangement of fibers

in real fabrics, inhomogeneity caused by packing of fabrics in LCM molds [46], higher

permeability near the mold walls causing race tracking, gaps formed between fabric layers

in a layered porous medium, and nesting [53,54]. Hence, though one can use the analytical

models to get an order of magnitude estimate of the permeability, invariably one must

rely on experimental measurement to determine the permeability for fibrous porous media

created inside the molds [17, 18].

A layer of complexity is added by the fact that the permeability is a function of

the property porosity. Wherever the fibrous preform undergoes compression or expansion

during mold-filling (say in VARTM [10]), one often requires multiple experiments in

order to track the dependence of permeability on the porosity. Though such experiments

involving simple flow geometries are easy to model mathematically [18,55–58], development

of the corresponding setups is an expensive and time consuming proposition. There is also

the issue of calibration of such a setup which is tied to the accuracy of the permeability

value obtained from the equipment [59].

In the last couple of decades, significant research has been done to develop techniques

to reconstruct the pore structure of porous media in 2-D using optical and electron

microscopy (SEM, TEM, etc.) [15, 60, 61] and in 3-D using X-ray microtomography or

micro-CT or µ-CT [16, 42, 62–64]. In case the 3-D reconstruction becomes expensive in

terms of memory usage, disk storage, time and money, software such as GeoDict allows

one to generate unit cells with the same average properties as those of a real porous

medium. (For example, GeoDict has been used to generate unit cells using the porosity

and average fiber-diameter for (1) a glass-fiber wick [17], and (2) fiber tows [18]). In the
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last FPCM (Flow Processes in Composites Materials) conference at Lulea, Sweden in

2018, the issue of directly measuring permeability from the microstructure was raised in

the workshop on Virtual Permeability Benchmark. The idea is that one develops the 2-D

or 3-D pore geometry within a unit-cell and then runs flow simulations in order to get

permeability results from the applied pressure and flow rate data.

The permeability estimation method of using the Stokes equation for modeling flow in

a unit-cell is well known [65]. Brown [66] experimentally showed that when a fluid flows

through a porous medium, the flux and the pressure gradient are linearly dependent, and

that the coefficient of proportionality comprises of two terms: the first, characterizing

the flowing material, is the viscosity, and the second, characterizing the porous medium,

is the permeability. In other words, the Darcy’s law is followed if Stokes flow is occurring

between the particles of a porous medium. For isotropic media, the process of permeability

estimation is quite simple: first use the Stokes equation to compute the flow rate through

an isotropic unit-cell, then apply the Darcy’s law to estimate the scalar permeability.

However, for anisotropic porous media, the permeability is a 2nd order tensor with six

unknown components and its estimation process becomes quite complicated [20]. As

we shall see later, for the determination of the 2-D permeability tensor1 with three

unknown components, three Stokes flow simulations have to be conducted along three

unique directions. Similarly, for the determination of the full 3-D permeability tensor in a

normal porous medium, six Stokes flow simulations along six separate directions have to

be conducted [19]. This difficult situation exists if the principal permeability directions

are a priori unknown. These directions are easy to ascertain in simple systems such as

a bank of parallel aligned fibers [21, 22]. However, for most real systems (with either

the fibers distributed randomly, or the fibers in the form of tows of continuous filaments
1The thin fabrics woven or stitched from carbon or glass fibers are used to make preforms for the

RTM or VARTM processes that are employed for making polymer-matrix composites with small wall
thicknesses. The porous medium made by the compression of the preform in the RTM/VARTM mold
can then be treated as a 2-D porous medium for the in-plane flow of the resin. The permeability can
then be represented as a 2×2 matrix and can be characterized as a 2-D tensor [37].
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woven or stitched in intricate repetitive patterns), such directions are not obvious. It is

to be noted that these principal directions can be determined by studying the ellipse

(in a 2-D study) and the ellipsoid (in a 3-D study) that result from conducting a liquid

injection experiment at a single point with the major and minor axes of the resultant

elliptical front corresponding with the principal directions [56]. Such experiments are easy

to conduct for the 2-D case where a transparent flat mold can be used to observe the

progress of the flow front in the 2-D plane [64,67–70]. However, we are not aware of any

satisfactory setup available that can ‘see’ such a front developing in the 3-D media which

is often opaque (though some work has been done in the past to sense the arrival of fronts

at different mold locations using grids of optical fibers or conducting wires [67]). Once

these principal permeability directions are known, one can generate the full permeability

tensor by conducting the Stokes flow simulations along only two principal directions in

the 2-D case, or only three principal directions in the 3-D case.

In the composites processing community, there is a trend to believe that one can

measure the transverse or ‘Z-direction’ permeability by conducting some transverse or

across-the-thickness flow experiments for fiber mats or fabrics [71, 72]. Such a belief, at

best, can be classified as an untested hypothesis because a stack of fabrics may very

well have their three principal-permeability directions arranged in a very complex 3-D

fashion– to the best of our knowledge, no one has tested the fact that the Z-direction is

indeed one of the principal directions!

The volume averaging method [73–77] is often used in upscaling the flow and transport

phenomena in porous media from the microscale to macroscale. Whitaker, one of the

foremost proponents of this upscaling technique, employed the rigorously-derived volume

averaging theorems for deriving the Darcy’s law from the first principles [78]. One can

use this derivation to comment on the permeability of a porous medium. Valdes-Parada

et al. [52] used the volume averaging method to show that the permeability of a porous

medium is influenced by its microstructure and the Carman-Kozeny equation is incapable

8
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of estimating the permeability over a broad range of porous media configurations. Kim et

al. [79] used unit cells with regular arrangement of rectangular particles in their volume-

averaging study. The dimensions of these rectangular obstacles, representative of the

solid phase, were varied while preserving the porosity of the model. In an attempt to

predict permeability with confidence, Eidsath [80] solved the closure problem for different

arrangement of arrays of cylinders and his results matched reasonably with Bergelin et

al.’s [81] experimental work. Similarly, Zick et al. [65] estimated the permeability by

calculating the drag force exerted on a periodic array of spheres using the Stokes flow.

In recent years, a volume averaging-based approach, to be referred to here as the

closure formulation method, has been identified as a credible numerical technique to

estimate the permeability of porous media. The closure formulation, where the macrosco-

pic flow variables (pressure and velocity) were linked to the microscopic variations in the

same flow quantities within a unit cell, was developed to close the averaged momentum

equation [82]. This integro-differential formulation, where a boundary value problem

expressed in terms of a set of elliptic partial differential equations (PDEs) is solved in

unit cells with periodic boundary conditions, is now regularly used in the estimation

of permeability [17, 18, 60, 83, 84]. For example, Barari et al. [60] used the closure

formulation to estimate the permeability of porous media made from cellulose nano-

fibers and sintered polymer beads and found them to be quite close to the experimentally

determined values. Similarly, Zarandi et al. applied the closure formulation to determine

the permeability for glass-fiber wicks [17] and fiber tows [18], which matched very well

with the experiments and Stokes-flow simulations. A significant advantage of this volume

averaging-based method is that the complete permeability tensor can be determined from

only one simulation. The additional advantage of the method is the development of

an effective micro-macro coupling, i.e., permeability is derived from solving the closure

formulation in a unit cell of real porous media, thus incorporating the effects of detailed

9
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pore-scale geometry in the resulting permeability tensor2.

In this chapter, we seek to compare these two important numerical methods to

estimate the permeability directly from the pore microstructure: (1) the closure formulation

method, and (2) the Stokes-Darcy method based on numerical simulation of the creeping

flow in unit cells. In the closure formulation method, the governing equations for the

mapping variables (used for closing the volume-averaged momentum equation [82]) are

solved after applying the periodicity conditions and the resulting fields are integrated

to yield the complete permeability tensor. Hence, this first method provides a fast and

relatively inexpensive way to find the in-plane permeability tensor through a single

simulation. In the Stokes-Darcy method, 1-D channel flow numerical experiments are

conducted along three different directions for the 2-D medium, and along six different

orientations for the 3-D medium. For a pressure differential applied over the unit-cell, the

resulting flow rate is used in the Darcy’s law to obtain the effective permeability along the

chosen direction. The complete permeability tensors in the 2-D and 3-D cases are obtained

after significant mathematical manipulations of the three and six effective permeability

values, respectively. Hence, this second method is rather long as it requires multiple flow

simulations along with the subsequent tedious computations and manipulations.

Our main aim in this chapter is to rigorously test the performance of the closure

formulation in predicting permeability by comparing it with the Stokes-Darcy flow method.

The questions we want to be answered are: (a) How does the accuracy of the closure

formulation compare with that of the Stokes-Darcy method for an anisotropic porous

medium where the principal directions are not known? (b) Do we realize the advantage of

much lesser number of numerical experiments, and hence significantly reduced computati-

onal time, associated with the former technique?
2The effect of microstructure is usually included in the analytical permeability models through (a)

average particle/fiber diameter and (b) porosity (which is the ratio of pore volume to the total volume
in an REV) [18].
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2.2 Theory and Mathematical Formulation

2.2.1 Permeability estimation using the closure formulation

The closure formulation to estimate the porous medium permeability is based on the

volume averaging method as proposed and practiced by Whitaker [82]. A synopsis of

the method is presented in this section. The physical process under study is that of a

single-phase flow in a rigid porous medium described in terms of a β−σ system, where σ

represents the rigid stationary solid phase and β denotes the fluid phase passing through

the pore space of the porous medium. In such a flow, the volume fraction of the β phase

is equal to the porosity of the porous medium, which is defined as the ratio of fluid (pore)

volume inside a fixed representative elementary volume (REV) to the total volume of the

REV.

As proposed by Whitaker [82], the volume averaging method can be used to rigorously

derive the Darcy’s law at the macroscale from the Stokes equation at the microscale. In

the derivation, an intermediate volume averaged-equation contains integral terms that

require the knowledge of deviation of the point velocity of fluid from its average velocity.

In other words, to close the system of equations, the distribution of velocity and pressure

deviations from their averages is required, which effectively splits the length scale in the

problem into the local pore scale and the macroscopic lab scale. The method then puts

forth a system of equations and boundary conditions called the closure formulation, so

as to minimize the information loss occurring during upscaling of pressure and velocity

fields. The vector, dβ, is the transformed pressure-mapping variable while the 2nd order

tensor,Dβ, is the transformed velocity-mapping variable. The basic purpose of the closure

formulation is to generate the dβ and Dβ fields within the pore region of the considered

unit-cell so that they can be integrated to obtain the permeability tensor, K, for the

porous medium.
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The closure equation that results from the Stokes equation is given as

−∇dβ +∇2Dβ + I = 0 (2.1)

and similarly, the closure equation derived from the continuity equation can be expressed

as

∇ ·Dβ = 0 . (2.2)

Note that the closure-formulation problem can be shown to be similar to the Stokes

flow boundary value problem that can be solved in a unit-cell [82]. The no-slip boundary

condition at the fluid-solid interface and the periodic flow conditions at the unit-cell

boundaries are transformed into equivalent boundary conditions for the closure-formulation

as follows:

Boundary Condition 1

Dβ = 0 at Aβσ . (2.3)

Boundary Condition 2

Dβ (r+ li) = Dβ (r) (2.4)

dβ (r+ li) = dβ (r) . (2.5)

The periodicity boundary condition indicates that the opposite boundaries of the unit

cells have same values for dβ and Dβ at the corresponding points. Here, r represents the

position vector of any point on the unit-cell boundary, while li is the lattice vector with

i ∈ (1, 2, 3) that expresses the spatially periodic nature of the unit-cell [60].

Once dβ and Dβ are solved for, the permeability tensor, K, is obtained as a result of

the global averaging constraint placed over deviation in the velocity field and is estimated

through

K = εβ 〈Dβ〉β (2.6)
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where 〈Dβ〉β is the intrinsic phase average of the mapping variable Dβ, and is defined by

〈Dβ〉β =
1

Vβ

∫
Vβ

Dβ dV (2.7)

such that Vβ is the volume of the β phase within the REV.

Note that estimation of the permeability tensor using the closure-formulation technique

does not involve the use of any fluid properties (viscosity and density).

2.2.2 Permeability estimation through the Stokes-Darcy Method

The Stokes-Darcy method is essentially the traditional channel-flow experiment approach

for numerically estimating the permeability, which involves setting up a 1-D flow geometry,

imposing a pressure drop across the system, generating corresponding the flow rate,

finding the average fluid velocity using the flow rate, and finally, calculating the effective

permeability using the Darcy’s law. This approach is easy for isotropic porous media

and yields the permeability as a scalar quantity. However, for anisotropic porous media

where the permeability is a 2nd order tensor, the 1-D (channel) flow method is not a

straightforward one [19].

The most general form of the Darcy’s law for anisotropic porous media (in matrix

form) is


q1

q2

q3

 = − 1

µ


K11 K12 K13

K21 K22 K23

K31 K32 K33



∂1P

∂2P

∂3P

 (2.8)

where qi with i ∈ (1, 2, 3) represent the Darcy velocity components, Kij are the compone-

nts of the permeability tensor, µ is the dynamic viscosity of the fluid, and ∂iP is the

pressure gradient along i-direction of the chosen coordinate system.

In the 1-D flow experiments where the liquid is forced through a flat rectangular

mold with layers of fabrics as a preform that is sandwiched between the top and bottom
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mold plates, the side walls are assumed to be impermeable and effective permeabilities

are evaluated along chosen directions. Next, we adopt the permeability measurement

framework put forth by Weitzenböck et al. [19] to determine the permeability tensor

components based on complex non-linear combinations of effective permeabilities. Appen-

dices A and B list those permeability expressions for the 3-D and 2-D cases, respectively.

2.2.2.1 2-D permeability estimation

As explained in Appendix B, the results from the unidirectional flow experiments along

three different in-plane directions are used to decipher the complete 2-D tensor. The

principal permeability components K1, K2 and θ are expressed in terms of the effective

permeabilities KI , KII and KIII along the chosen flow directions I, II and III (see

Fig. 2.8), respectively, as

K1 = KI

(
A−D
A− D

cos2θ

)
(2.9)

K2 = KIII

(
A+D

A+ D
cos2θ

)
(2.10)

θ =
1

2
tan−1

(
A

D
− A2 −D2

KII ·D

)
(2.11)

such that A =
(
KI+KIII

2

)
and D =

(
KI−KIII

2

)
. Finally, the permeability tensor, K, with

its componentsKxx,Kyy andKxy, are derived from these principal values (Eqs. (2.9-2.11))

as per Eqs. (B.15-B.17).

2.2.2.2 3-D permeability estimation

The 3-D permeability measurements are generally based on three simplified 1-D flow

experiments along the a priori known or assumed principal directions. However, Weitzenböck

et al.’s [19] approach enables the determination of the 3-D permeability tensor in case

these principal directions are not known or assumed. In this case, six-independent
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unidirectional in- and out-of-plane experimental measurements are required for obtaining

the tensor.

First, the effective permeability values (Ki with i ∈ (I, V I)) are calculated using

the Darcy’s law by simulating pressure fields across six different orientations over the

unit-cell. Next, these values are inputted into some complex expressions for permeability

tensor component as given by Eqs. (A.12-A.17) in Appendix A. Finally, the principal

permeabilitiesK1, K2 andK3 along with the principal directions are obtained by performing

the standard eigenvalue and eigenvector operations on the resultant permeability matrix.

2.3 Theoretical Model

This chapter aims to test the anisotropic permeability tensors obtained from the conventi-

onal Stokes-Darcy method and the closure formulation method for both the 2-D and 3-D

cases. Here we endeavor to first create unit cells with solid-phase particles.

In this section, we describe the following steps:

1. Preparation of models for anisotropic 2-D and 3-D porous media.

2. Orientations of the pressure field applied across the unit cells extracted from the

models.

3. Calculation of permeability after solving the fluid-flow equations inside the unit

cells.

The models developed for the 2-D and 3-D porous media and the examples of unit

cells extracted from them for the present study are shown in Figure 2.1. Note that the

model developed for the 3-D system was smaller than that for the 2-D system; this is

because of the larger memory and disk space requirements for the former.
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Figure 2.1: Examples of unit cells extracted from: (a) 2-D model (700 µm to 1900 µm), (b)
3-D model (200 µm and 300 µm). The unit cells used in the study are marked with black dashed
lines while the REV can be approximated by the largest unit cell possible for the two cases.

2.3.1 Preparation of models for anisotropic porous media

The closure formulation technique has been tested on unit cells representing isotropic

porous-media and found to give accurate results [65,79,80]. We advance these studies by

further testing and evaluating this volume averaging-based method on appropriate unit

cells for anisotropic porous media. Note that to create flow-related anisotropic nature

in a porous medium, the solid-phase particles are expected to be elongated as well as

oriented along some preferred direction. Here, we will first create an idealized model of

such a medium, and then extract unit cells from it. This procedure will be followed in

both the 2-D and 3-D systems.

The model development involves the following stages: first, preparation of angular

positions of the solid-phase particles using a MATLAB-based random number generator

algorithm; next, calculation of the coordinates of these particles within an REV encompa-

ssing the whole model, and finally, alteration of the particle shapes and fixing their

orientations while maintaining overall porosity in the REV.

In the following sections, each of these sub-steps is further discussed in greater details.

2.3.1.1 Orientation of the particles

Anisotropic porous media properties such as permeability depend on the measurement

direction. Therefore, to create anisotropy in our models, we chose to align the particles
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Figure 2.2: Various angles associated with the determination of particle orientation in 2-D and
3-D models.

within a pre-defined band of deviations with respect to a constant angle, as shown in

Figure 2.2. We mathematically present it as

Particle angle = Constant angle ±Deviation angle . (2.12)

We decided to use a random value for the deviation angle in order to render the

particle angle stochastic in nature. This is because, in reality, similar particles are never

aligned perfectly.

For both the 2-D and 3-D unit cells, the constant angle alpha, α, defined with

respect to the X-axis, was assumed to be 45◦ and the particle angles were set using

the “normrnd” function in MATLAB. This function generates a normal random number

distribution based on the inputted parameters that are mean ‘µ’ and standard deviation

‘σ’. The parametric values used in the normrnd function for the two unit cells are listed

in Table 2.1. Figure 2.3 shows the Gaussian distribution of these particle angles, centered

around the constant angle of 45◦.

Table 2.1: Parametric values used in the calculation of particle angles.

Dimensions Constant angle (◦) Deviation angle (◦)

2-D α = 45
µ = 0

σ = 10

3-D α = 45
µ = 0

σ = 10
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The constant angle which is defined beforehand has another objective. This provides a

validation test for the principal directions calculated as the eigenvectors of the permeability

tensor. If the principal directions closely match the assumed constant angle, it would

verify and give credence to the principal-angle calculation method [19] for the 2-D case.

Since each chosen unit-cell would have a unique permeability tensor and the resulting

principal directions, the closeness of the latter to the assumed constant angle would also

enable one to compare the accuracy of both the methods in predicting the permeability

tensor.

2.3.1.2 Position of the particles and shape effect

The 2-D model representing anisotropic porous media is made up of a square domain

interspersed with elongated particles representing the solid phase. The particles were

placed equidistantly along the X- and Y-axes with 100 µm distance between them as

shown in Fig. 2.4a. The corresponding 3-D model is a cube with equidistantly placed

particles along the three major axes. The distance between these particles was 100 µm

and they were oriented along the randomly-computed particle angles as discussed in

Section 2.3.1.1. The positional details of the particles in the 3-D case are shown in

Fig. 2.4b.

With such a regular placement of particles, different unit cells of varying sizes were

Figure 2.3: Histograms for particle angle distribution in: (a) 2-D model, (b) 3-D model.
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Figure 2.4: The Constant angle and the distances between particles in: (a) 2-D model, (b) 3-D
model.

created/extracted from the model without violating the periodic boundary-condition

needed for the closure-formulation solution, which clearly requires the opposite edges of

the unit-cell to be of identical nature [81]. (We are aware that such models of real porous

media constructed from micrographs rarely satisfy this criterion of periodic boundary-

condition, and in such cases, permeability studies have been performed while capturing

the truncated details of an actual microstructure within an assumed unit-cell [60, 81].

The use of such unit cells with artificially-enforced periodic boundaries in non-periodic

microstructures leads to generation of some error, which is defined as deviation from the

actual solution of the closure problem close to the REV borders [61,82].)

As shown in Fig. 2.5a and Fig. 2.5b, elliptical and rectangular particle shapes were

considered for the 2-D model while ellipsoids and cylinders were used for the 3-D models.

The areas/volumes of the particles in the 2-D/3-D models were adjusted such that the

overall porosity of the unit cell remains constant. This basically means setting equivalent

areas for the rectangular and elliptical particles in the 2-D case (or equivalent volumes

for the cylindrical and ellipsoidal particles in the 3-D case) by suitably altering their

dimensions uniformly across all the particles in the models. The shape-change study led

to alteration in the microstructure, which was then used to test the effectiveness of the

proposed permeability-estimation methods in capturing the resultant sharp contrast in
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Figure 2.5: Different particle shapes used in the shape-change study: (a) ellipse and (b)
rectangle for 2-D unit cells; (c) ellipsoid and (d) cylinder for 3-D unit cells, while preserving
the overall REV porosity (εβ). The white regions in (a) and (b) denote the solid particles,
whereas the grey region is the pore phase. The dark-grey shaded objects in (c) and (d) indicate
solid particles in the 3-D domain and the remaining empty portion is the pore volume.

permeability behaviour in terms of the diagonal terms vis-à-vis the non-diagonal terms.

Also, the aspect ratio (AR) of these particles was manipulated to generate anisotropy

in the system from an initally existing isotropic configuration (see Fig. 2.6a and Fig. 2.6b).

The aspect ratio for a 2-D ellipse model was defined as the ratio of semi-major to semi-

minor axis of a particle, for a 2-D rectangle model it is the ratio of length to breadth

of a particle, for a 3-D ellipsoid model it is again the ratio of semi-major to semi-minor

axis of a particle (where two out of three axes are assumed to be semi-minor and of equal

length), and finally, for a 3-D cylinder model it is set as the ratio of length to diameter

of a particle.

2.3.2 Orientations of the pressure field to conduct Stokes-Darcy flow simulations

There is an added layer of difficulty associated with the Stokes-Darcy method of finding

the permeability tensor. As previously stated, Weitzenböck et al. [19] have shown that

the 3-D permeability tensor can be derived from the channel flow data with the help of
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Figure 2.6: Different aspect ratios (AR) used in the shape-change study: (a) 2-D models, with
AR ranging from 1.0 to 7.0; (b) 3-D models, with AR ranging from 1.0 to 2.5. Note that AR 1.0
(i.e., AR = 1.0) represents isotropic unit cells, whereas AR 7.0 and AR 2.5 indicate maximum
anisotropy in the 2-D and 3-D models, respectively.

at least six different unidirectional flow experiments. Similarly, three independent flow

experiments are required for determination of the 2-D permeability tensor. Along all

these required flow directions, one must find ways of imposing pressure gradients in the

considered 2-D and 3-D models numerically, and that can be challenging.

It is important to note that the six different flow experiments performed in the 3-D

case need to consider both in-plane and out-of-plane experiments. This is because after

determining three directional (effective) permeabilities in a plane, any further measurem-

ents in the same plane would prove ineffective in deciphering the complete tensor [19].

Therefore, if a channel flow experiment is conducted to measure permeability in the X-

Y-Z coordinate system along the X-axis, two more of the effective permeabilities can

be obtained from the X-Y plane; however, the remaining three experiments have to be

conducted in the out-of-plane space to account for the required permeability values in

the X-Z and Y-Z planes. This is achieved by conducting 1-D channel flow experiments

across the system along different orientations as shown in Fig. 2.7.

As shown in Fig. 2.8, in the 2-D case, the pressure gradient is applied along three

directions: first, along the X-axis (direction I); second, at an angle 45◦ to the X-
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Figure 2.7: The various measurement directions in the laboratory frame of reference considered
for 1-D channel flow experiments to obtain the 3-D permeability tensor. The magnitude of angle
ζ is 45◦.

axis (direction II), and finally, along the Y-axis (direction III). These three effective

permeability values are used to calculate the principal permeability components as given

by Eqs. (2.9-2.11). Generally, one should first calculate the angle of orientation (θ) and

then use it to obtain K1 and K2. Further, the permeability tensor components are found

using their correlation with the principal permeability tensor through a passive rotation

of the latter about the Z-axis by angle θ, which is measured from direction I towards

direction 1. The final expressions for the tensor components are given in Eqs. (B.15-B.17).

It is also worth mentioning here about the models which were treated as exceptions to

the above-mentioned procedure. For the case of AR 1.0, when the models are isotropic,

only a single Stokes-Darcy flow simulation is performed to capture the permeability of the

medium. Here, the 2-D rectangle unit cells with AR 1.0 (unlike their ellipse counterparts

which are perfectly circular for this case and the resulting porous medium is isotropic) are

assumed to be very close to the isotropic state with minimal deviations occurring due to

variation in the particle angles. The permeability results pertaining to these exceptions

are further discussed in Section 2.4.3.1.
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Figure 2.8: I, II and III denote the three directions of the 1-D (channel) flow experiment
for the 2-D case. 1 and 2 are the principal directions of the permeability tensor. The angle θ
defines the flow direction vis-à-vis the principal direction 1.

In the 3-D case, the first channel flow experiment is conducted along the X-axis (see

Fig. 2.7) to obtain the first effective permeability value (KI). The next measurement

direction (i.e., the direction of imposed pressure gradient) is chosen along the angle ζ

(equal to 45◦) with respect to the X-axis in the X-Y plane of the laboratory frame

of reference. Consequently, one needs to relate the permeability components pertaining

to the second effective permeability value with the first, and this is done by passively

rotating the first measurement direction about the Z-axis by angle ζ. The second effective

permeability value (KII) is obtained after feeding the rotated tensor component expressions

into the unidirectional effective permeability equation (refer to Appendix A for more

details). Following the same procedure, KIII is calculated by further rotation of the

measurement direction about the Z-axis by 45◦ (which makes the measurement direction

parallel to the Y-axis, as shown in Fig. 2.7). Next, KV is obtained by rotating the

measurement direction I about the Y-axis by −90◦, which results in measurement along

the Z-axis in the laboratory frame of reference. The measurement direction IV (to find

KIV ), which lies in the Y-Z plane, is obtained after successive rotations of direction I

about the Z- and X-axis by 90◦ and 45◦, respectively, whereas the rotation of direction
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Figure 2.9: Steps involved in the preparation of a sample 3-D model for measuring the effective
permeability KV I in the X-Z plane, where (a) shows the X-Z view of the sample unit-cell, and
(b) shows an array of the sample unit-cell replicates (all marked by solid black lines), and the
diagonally-positioned long and narrow flow domain (marked by the broken black line) drawn
for the measurement of KV I . Finally, (c) shows the inlet and outlet faces of the newly created
domain corresponding to the enforced pressure gradient along the direction V I. (Note that ×
in the coordinate system icon indicates the Y-axis pointing into-the-plane.)

I about the Y-axis by −45◦ results in measurement direction V I, which leads to KV I

residing in the X-Z plane. Finally, these six directional permeabilities are reformulated

in terms of the 3-D permeability tensor components using Eqs. (A.12-A.17) given in

Appendix A.

(Note that these components are different from those presented in Appendix B of [19].

This is because Weitzenböck et al.’s [19] permeability estimation method in the 3-D case

proposes incorrect rotation angles for the measurement direction I for measurement of

the effective permeabilities, KV and KV I . We have offered modifications for the same and

formulated the correct expressions for the tensor components in the 3-D case, as given in

Appendix A.)

As done in the 2-D case, only a single Stokes-Darcy simulation is required to solve the

permeability tensor for the 3-D unit cells with AR 1.0 ellipsoids (or spheres) representing

an isotropic porous medium. However, two simulations are needed to accurately capture

the permeability tensor for 3-D unit cells representing isotropic porous media with AR

1.0 cylinders: one, along the X- or Z-axis, and the other, along the Y-axis. The reason
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behind the extra simulation is that although the 3-D cylinder unit cells with AR 1.0

cylinders were seemingly close to achieving a scalar permeability tensor, the shape of

the particle along with variation in particle angles caused a slight deviation from the

isotropic state (see Kyy component in the 3-D cylinder unit-cell tensors with AR 1.0

in Table 2.11) and hence it became necessary to account for these effects using another

simulation in the direction orthogonal to the X-Z plane. (Note that the particle angles for

3-D models are only set in the X-Z plane, and therefore the susceptibility to permeability

change is maximum when considering the area projected by the particles onto this plane.)

Hereafter, keeping in mind the above caveat, the 3-D cylinder unit cells with AR 1.0 are

reasonably close to be treated as isotropic models. A summary of the concerned pressure

gradient directions for both 2-D and 3-D models is given in Table 2.2.

At this stage, some comment on how the permeability along a non-cardinal direction

is measured is in order. Fig. 2.9 illustrates the steps followed for creating a sample

flow domain for measurement of KV I . The steps are described as follows. First, we

switch to the X-Z view of the sample unit-cell, as shown in Fig. 2.9a. Next, we create

an array of the sample-unit cell’s replicates in the X- and Z-directions, as illustrated

by the unit-cells marked by solid black lines in Fig. 2.9b. A long and narrow domain

(highlighted by the broken black line in Fig. 2.9b), which is rotated about the Y-axis

by 45◦, is also carved out from this cluster of unit cells. Finally, the pressure boundary

conditions are imposed along the direction V I across the inlet and outlet faces of this

newly created flow domain, as depicted in Fig. 2.9c. A similar strategy is implemented

for effective permeability measurements along the other pressure-gradient directions. Note

that the reason behind creation of a long and narrow domain is that the unidirectional

flow approximation produces more accurate results for higher aspect-ratio flow regions,

as demonstrated by Tan et al. [11].

The applied pressure-gradient directions for our anisotropic models are listed in Table

2.2. With the help of the permeability expressions developed by Weitzenböck et al. [19]
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Table 2.2: Pressure gradient directions for 2-D and 3-D models.

Model type Effective permeability Direction of pressure gradient3

2-D, 3-D KI along X-axis
2-D, 3-D KII 45◦ between X- and Y-axis
2-D, 3-D KIII along Y-axis
3-D KIV 45◦ between Y- and Z-axis
3-D KV along Z-axis
3-D KV I 45◦ between Z- and X-axis

for ζ equal to 45◦, we estimated the 2-D and 3-D permeability tensors using the method

described in Appendices B and A, respectively.

2.3.3 Numerical simulation methods for estimation of permeability tensor

Researchers have evaluated permeability of porous media made of fibres/particles [30,46,

47, 85] while validating them with the theoretical models based on idealized geometrical

arrangements of fibres/particles [31,45,86]. Most of this research is focused on estimation

of 2-D permeability; however, we are unaware of any anisotropic porous media studies

assessing the validation of a complete 3-D permeability tensor. The decreasing cost of

computational power has given us an opportunity to numerically test our models using

the Stokes-Darcy flow and closure formulation methods.

2.3.3.1 Stokes-Darcy simulation

In this method, the continuity and Navier-Stokes governing equations for Newtonian flows

are solved inside the unit cells. The slow movement of fluid through the pores leads us

to assume that the Reynolds number for the particles in this case would be less than 1,

hence, justifying the application of the Creeping flow physics in COMSOL Multiphysics, a

finite element-based solver. To resemble the 1-D channel flow set up, symmetry boundary

conditions are imposed on the opposite edges/faces of the 2-D/3-D models resembling
3The pressure gradient directions are as per the laboratory frame of reference.
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rectangle/rectangular box, respectively. The effective permeability, Ki with i ∈ (I, V I),

can be calculated by imposing pressure differentials along different directions in 2-D/3-D

models as discussed in Section 2.3.2 and then using the Darcy’s law. It is given by

Keff =
µQL

(P in − Pout)A
(2.13)

where µ is the dynamic viscosity of the fluid, Q/A (= flow rate/cross-sectional area) is

the specific discharge, Pin is the input pressure, Pout is the output pressure, and L is the

REV length across the chosen flow direction.

The physical parameter values used in our Stokes-Darcy flow simulations are listed in

Table 2.3. Finally, the effective permeability values are used to evaluate the full 2-D/3-D

permeability tensors using the procedures described in Section 2.2.2.

2.3.3.2 Closure formulation simulation

As discussed in Section 2.2.1, the transformed form of the pore-level momentum and

continuity equations for the closure formulation are given by Eqs. (2.1-2.2), respectively.

Dβ is a 2nd order tensor and is the mapping variable overseeing the variation in the velocity

field within the unit-cell. Similarly, the vector dβ is the mapping variable which predicts

pressure variation within the pore region of the unit-cell. The Coefficient form of PDE,

a mathematical module available in COMSOL, is selected for the purpose of modeling

these equations. Eqs. (2.1) and (2.2) are applied throughout the fluid domain of the

unit cells. Boundary Condition 1 (given by Eq. (2.3)) is essentially a ‘No-slip’ condition,

which is imposed on the fluid-solid interface area, Aβσ. Boundary Condition 2 (given by

Table 2.3: Physical parameter values used for Stokes-Darcy flow simulations.

Physical parameter Value Description
µ 0.001 Pa·s Dynamic viscosity
Pin 1 Pa Inlet pressure
Pout 0 Pa Outlet pressure
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Figure 2.10: Unit cells of an idealized 2-D porous medium considered by Lasseux et al. with
the porosities of (a) 75% and (b) 50% [87].

Eqs. (2.4-2.5)) calls for periodicity of the pressure and velocity fields and is imposed on

the opposite edges/faces of the 2-D/3-D unit cells, respectively. This procedure leads to

the development of six coupled equations in the 2-D case and twelve coupled equations in

the 3-D case. After solving these equations, the product of the intrinsic phase-averaged

Dβ and porosity, εβ, would give the permeability tensor, K, through the use of Eq. (2.6).

2.4 Results and discussion

2.4.1 Initial validation of the permeability estimation methods

For validating the closure-formulation method and gauging its accuracy for estimating the

permeability, we chose to compare our results with those of a study performed by Lasseux

et al. [87] on an idealized isotropic porous medium. As shown in Fig. 2.10, square-shaped

obstacles (considered to be solid phase) placed at the center of the larger square-shaped

unit cells (with side-length L) were considered for validation. The two models described in

parts (a) and (b) of the figure have the porosities of 0.75 and 0.50, respectively. Further,

the governing equations and boundary conditions given in Eqs. (2.1-2.5) were solved

within the computational domain (i.e., in the vacant or ‘pore’ part of the unit-cell) using

COMSOL, and the resultant permeability was normalized with the side-length ‘L’ of the

unit cell to order to generate K∗.
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Table 2.4 shows excellent agreement between the permeability results obtained from

our closure-formulation simulation and those of Lasseux et al.’s [87]. Achievement of such

a good match validates our simulation. It also strengthens our confidence in using this

technique for further analysis.

Note that the validation of the Stokes-Darcy flow method, i.e., the channel-flow

experimental approach, for estimating the permeability tensor is presented elsewhere [19].

Here, we aim to validate our permeability results by comparing them with the predictions

of a few theoretical models for permeability. The following prominent theoretical models

have been selected for this purpose: the Gebart model for flow transverse to parallel

fibers, the Bruschke & Advani model for flow across the parallel fibers (using the square

unit-cell), and the Kozeny-Carman model for flow through a packed bed of solids ([17]).

For validation, we chose to test these models on an ellipse unit-cell with AR 1.0 (i.e.,

representing a transversely isotropic porous medium) where the porosity (εβ) is 86%

and the mean radius of a particle is 21.11 µm. The results from both the permeability

estimation methods (i.e., the closure-formulation and the Stokes-Darcy flow methods) and

those calculated from the analytical expressions corresponding to the theoretical models

are presented in Table 2.5. A remarkable degree of closeness can be observed between

the permeability values predicted by the different permeability estimation models. It

should be noted that the theoretical models have various built-in constraints and are

often considered useful for providing good ballpark estimates of permeability values for

porous-media samples [17]. But, in this study we observe a very good agreement between

Table 2.4: Comparison of the closure-formulation result of Lasseux et al. [87] and that of
the present work for the 2-D isotropic porous-medium shown in Fig. 2.10 in terms of the
dimensionless permeability K∗.

Dimensionless permeability K∗(= K
L2 )Porosity

Lasseux et al.’s results Present work’s results
50% 0.002386 0.002375
75% 0.013023 0.013014
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Table 2.5: Comparing the permeability values obtained from the numerical simulation methods
under study with those from the theoretical models [17] for an ellipse unit-cell with AR 1.0.
The unit-cell has porosity (εβ) of 86% and the mean radius of a particle is 21.11 µm (Unit:
×10−10 m2).

Numerical simulation methods Theoretical models
Stokes-Darcy flow Closure-formulation Gebart Bruschke & Advani Kozeny-Carman
3.01 2.99 3.06 2.52 3.21

the permeability results obtained from these theoretical models, and our Stokes-Darcy

flow and closure-formulation approaches, which further validates the accuracy of our

numerical simulations.

2.4.2 Mesh independence study

A mesh independence study was performed to evaluate the sensitivity of the permeability

results to mesh refinement. In COMSOL, the pore-region computational domains were

progressively subjected to three refinement levels: start with a coarse mesh, follow it with

a normal mesh, and conclude with a fine mesh. The permeability values for flow along X,

Y and Z axes were compared for both 2-D and 3-D models and found to converge in the

fine mesh setting. Therefore, we finally used the fine mesh size for our models to make

permeability estimations.

For CFD simulation, COMSOL’s mesh generator discretized the pore domains of 2-D

Table 2.6: Mesh details for the sample 2-D and 3-D unit cells.

Number of elementsModel type Element type
Coarse Normal Fine

Triangular 19001 20476 33325
2-D Quadrilateral 727 747 1451
(L = 1900µm) Edge 3219 3278 4751

Vertex 1448 1448 1448
Tetrahedral 10277 30721 42168

3-D Triangular 2744 5402 6516
(L = 300µm) Edge 720 1092 1128

Vertex 170 170 170
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unit cells with triangular and quadrilateral elements, and the pore domains of 3-D unit

cells with tetrahedral and triangular elements. The 2-D specimen selected for this purpose

is a unit-cell of length 1900 µm composed of rectangular particles with AR 3.5. The 3-D

sample is a unit-cell of length 300 µm comprising ellipsoidal particles with AR 1.0. The

mesh details for these specimens are listed in Table 2.6. The permeability variables for

flow along the major axes, X, Y and Z, are compared and tabulated in Table 2.7 for

different mesh sizes. For the closure-formulation method, they consist of K11, K22 and

K33, whereas for the Stokes-Darcy method, they are KI , KIII and KV . Fig. 2.11 shows

the convergence of permeability values for the selected mesh sizes. The relative error

criterion, ε, is set as

ε =

∣∣∣∣KFine −K
KFine

∣∣∣∣ . (2.14)

The solution with the maximum mesh refinement (fine mesh in this case) is considered

as the reference and the corresponding errors are reported in Table 2.8.

We clearly observe from Fig. 2.11 that the permeability values are nearly equal despite

an increase in the number of elements corresponding to different mesh types. Also,

Table 2.8 suggests that the relative error, ε, mostly decreases from the coarse mesh to

normal mesh, and the maximum error amongst the permeability variables corresponding

to the normal mesh is 0.72% (corresponding to K11 in 3-D case), which still falls within

Table 2.7: Permeability values for flow along major axes for different mesh sizes.

Permeability variables (×10−10 m2)Model type Mesh type
K11 K22 K33 KI KIII KV

Coarse 5.11 5.11 5.09 5.39 5.40 5.39
3-D Normal 5.11 5.13 5.12 5.41 5.43 5.41

Fine 5.14 5.14 5.14 5.42 5.43 5.42
Coarse 1.95 1.88 – 1.70 1.66 –

2-D Normal 1.91 1.87 – 1.70 1.66 –
Fine 1.91 1.88 – 1.70 1.67 –
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Figure 2.11: Mesh independence study comparing the permeability values from the Stokes-
Darcy (KI , KIII and KV ) method and the closure-formulation (K11, K22 and K33) method for
(a) 2-D case, (b) 3-D case, and corresponding to the coarse, normal and fine mesh sizes.

an error band of 1%. This confirms the accuracy of our numerical solutions and helps in

establishing the mesh independence of our results.

2.4.3 Comparison of the permeability tensors

After establishing the accuracy of our numerical simulations, we present the results for the

calculated permeability tensors in Table 2.9 and Table 2.11. The important parameters

considered in this investigation are the aspect ratio (AR) of the particles, particle shape,

and the unit-cell size. The next two sections comprise of comparative studies between the

permeability tensors obtained from the closure-formulation and Stokes-Darcy methods

for unit cells of different sizes. Finally, we compare the computational (CPU) times

Table 2.8: Relative error corresponding to the chosen permeability variables for different mesh
sizes.

Relative error, ε, in the considered permeability variables (%)Model type Mesh type
K11 K22 K33 KI KIII KV

Coarse 0.58 0.61 1.07 0.59 0.60 0.60
3-D Normal 0.72 0.37 0.39 0.15 0.14 0.14

Fine – – – – – –
Coarse 1.70 0.24 – 0.14 0.75 –

2-D Normal 0.00 0.21 – 0.06 0.60 –
Fine – – – – – –
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pertaining to both the methods and establish the superiority of the closure-formulation

method in this matter.

2.4.3.1 2-D models

The permeability results corresponding to variations in the unit-cell size, aspect ratio

(AR), particle shape, and the estimation methods are presented in Table 2.9. The off-

diagonal terms which are 3∼6 orders-of-magnitude lower than the diagonal components

have been considered as numerical errors and equated to zero.

We begin by observing the effect of unit-cell size on the permeability tensors. It is

generally accepted that a larger unit-cell is more suitable for simulation since it would

encompass more microstructural details and the periodicity condition would progressively

generate smaller contribution from the border regions of the unit-cell (hence lead to

smaller overall errors) [61]. In the present study also, we expected the permeability

values for different-sized unit cells of a given porosity and aspect ratio (containing evenly

positioned solid particles aligned within a specified angular band) to experience only small

variations. This fact was confirmed by comparing our results for different unit-cell with

similar ARs. For example, if we consider all the 2-D (ellipse) unit cells with AR 5.0 in

Table 2.9, then it can be noted that the permeability tensors are reasonably close across

the different-sized unit cells corresponding to both the methods. The resultant difference

between such tensors can most notably be attributed to the variance in the particle angles

associated with different unit cells, which, albeit small, remains noticeable.

Next, we investigate the effect of variation in AR on permeability tensors. If we observe

unit cells of a particular size (e.g., the 2-D ellipse unit cells of size 1500 µm), then we

note from Table 2.9 that with the increase in AR, the diagonal permeability values reduce

whereas the off-diagonal terms increase. The permeability tensors corresponding to unit-

cell size ranging from L = 700µm to 1900µm consistently follow the aforementioned

pattern across the variation in AR. In this scenario, as the particles become more elongated,

33



www.manaraa.com

Figure 2.12: A sample of streamlines (shown by black arrow lines) representing fluid flow
inside the unit-cell for (a) 2-D ellipse model with AR = 1.0, (b) 2-D ellipse model with AR =
7.0, (c) 3-D ellipsoid model with AR = 1.0, and (d) 3-D ellipsoid model with AR = 2.5.

the flow streamlines bend around them and majorly get diverted along the constant

direction (α) (see Fig. 2.12b). This alteration/elongation of flow paths along the major

axes of particles results in anisotropy, and is characterized by permeability reduction

along the major axes (the diagonal terms), which is countered by an increase along the

particle-orientation direction (the off-diagonal terms).

Let us compare the effect of the two methods on the increase in anisotropy. For

AR changing from 1.0 to 7.0, the average permeability drops across the main diagonal

elements by 29%-44% for the rectangular particles and by 46%-55% for the elliptical ones.

On the other hand, for AR 7.0, the average difference between the off-diagonal and main

diagonal terms reduces to 39%-49% for the rectangular particles and 35%-35% for the

elliptical ones compared to the almost two orders-of-magnitude difference for AR 1.0!

(Note that the former number in % corresponds to the Stokes-Darcy result while the

latter to the closure-formulation one.)
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Table 2.9: Computed permeability tensors for 2-D models corresponding to different: 1) unit-
cell sizes, 2) aspect ratios (AR), 3) particle shapes, and 4) permeability estimation methods.
The porosity across the unit cells is 0.86 and the geometrical mean radius of an elliptical particle
is 21.11µm.

Unit-cell Aspect ratio Permeability tensor (×10−10 m2)

size (µm) (AR)
Particle shape

Stokes-Darcy flow Closure-formulation

Rectangle

2.36 0.00

0.00 2.36


2.45 0.01

0.00 2.45


1.0

Ellipse

3.03 0.00

0.00 3.03


2.99 0.00

0.00 2.99


Rectangle

2.04 0.75

0.75 1.94


1.91 0.46

0.46 1.87


3.5

Ellipse

2.33 0.86

0.86 2.22


2.08 0.71

0.76 2.07


Rectangle

1.80 0.81

0.81 1.69


1.62 0.56

0.58 1.59


5.0

Ellipse

1.99 0.96

0.96 1.85


1.76 0.85

0.78 1.63


Rectangle

1.73 1.01

1.01 1.53


1.38 0.68

0.68 1.33



700

7.0
Ellipse

1.64 0.98

0.98 1.47


1.37 0.73

0.87 1.33


Rectangle

2.33 0.00

0.00 2.33


2.47 0.00

0.00 2.48


1.0

Ellipse

3.01 0.00

0.00 3.01


3.00 0.00

0.00 3.00


Rectangle

2.09 0.90

0.90 2.11


1.88 0.50

0.49 1.92
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3.5
Ellipse

2.33 0.93

0.93 2.35


2.13 0.72

0.74 2.16


Rectangle

1.86 0.93

0.93 1.86


1.67 0.60

0.63 1.67


5.0

Ellipse

2.01 1.04

1.04 2.02


1.72 0.85

0.82 1.75


Rectangle

1.71 1.06

1.06 1.70


1.39 0.74

0.74 1.43



1100

7.0
Ellipse

1.66 1.07

1.07 1.65


1.37 0.85

0.93 1.33


Rectangle

2.31 0.00

0.00 2.31


2.47 0.00

0.00 2.48


1.0

Ellipse

3.01 0.00

0.00 3.01


2.99 0.00

0.00 2.99


Rectangle

2.05 0.77

0.77 1.97


1.93 0.49

0.49 1.87


3.5

Ellipse

2.42 0.95

0.95 2.30


2.18 0.73

0.73 2.09


Rectangle

1.81 0.81

0.81 1.72


1.68 0.60

0.60 1.61


5.0

Ellipse

2.10 1.06

1.06 1.97


1.77 0.81

0.82 1.69


Rectangle

1.71 1.02

1.02 1.63


1.42 0.73

0.71 1.38



1500

7.0
Ellipse

1.75 1.12

1.12 1.66


1.37 0.89

0.87 1.31
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Rectangle

2.29 0.00

0.00 2.29


2.49 0.00

0.00 2.50


1.0

Ellipse

3.00 0.00

0.00 3.00


2.99 0.00

0.00 2.99


Rectangle

1.97 0.73

0.73 1.94


1.91 0.48

0.48 1.87


3.5

Ellipse

2.35 0.89

0.89 2.29


2.15 0.72

0.71 2.10


Rectangle

1.87 0.93

0.93 1.83


1.63 0.59

0.59 1.59


5.0

Ellipse

1.99 0.96

0.96 1.93


1.75 0.80

0.80 1.69


Rectangle

1.60 0.94

0.94 1.59


1.41 0.69

0.71 1.37



1900

7.0
Ellipse

1.58 0.95

0.95 1.55


1.37 0.88

0.87 1.34



Besides the AR study, the study of the change in particle shape (in Table 2.9) provides

interesting insights as well. For AR equal to 1.0, the rectangle is a square and the

ellipse is a circle; however, due to minor fluctuation in particle angles as described

in Section 2.3.1.1, the angular position of all the squares in the unit-cell tend not to

be absolutely along 45◦ whereas the circles remain unresponsive to this variation. This

difference is confirmed by the simulation results where a distinction can be made between

the rectangular- and elliptical-particle values for AR 1.0. As predicted by both the

methods, the permeability components for the circles (i.e., ellipse AR 1.0) for different

unit-cell sizes are strikingly close, whereas minor but noticeable difference exists in the

square’s (i.e., rectangle AR 1.0) case. Numerical results from both the methods show,
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that overall, the permeability values are higher for the elliptical obstacles as compared to

their rectangular counterparts. The reason behind this can be the smooth shape of the

former which facilitates fluid flow around them, unlike the latter case where sharp corners

are expected to inhibit smooth flow. However, as the AR increases, the permeability

values along the major axes to decrease. We proffer a kinematical explanation for this

change—this reduction can be correlated with the aligning of streamlines around the solid

particles with the particle-orientation directions, as seen in Fig. 2.12a and Fig. 2.12b. In

other words, the fluid finds it easier to flow along the particles as compared to along the

major axes.

We would seek a correlation between the permeability and the surface area of the

particle, which can be represented by its perimeter. In this study, the perimeter of the

rectangular particles was greater than that of the elliptical ones for AR 1.0, but upon

transitioning towards higher aspect ratios, we eventually reached and crossed a unique

aspect-ratio value lying between AR 5.0 and 7.0, after which the ellipse’s perimeter

became dominant of the two. Since an increase in a particle’s surface-area/perimeter

leads to lengthening of flow streamlines around it, an accumulation of this effect across

all the particles eventually lowers the permeability of the medium. Therefore, we expected

to observe higher permeability for the elliptical models with lower aspect ratios, but we

also anticipated them to show lower permeability values for higher aspect ratios (e.g.,

AR 7.0) when compared to their rectangular counterparts. As can be noted in Table 2.9,

the simple closure-formulation method proved highly consistent in capturing this effect of

change in microstructural details across all unit cells and gave accurate results. However,

one out of four pairs of such unit cells with AR 7.0 (unit cells with size 1500µm), which

were solved using the Stokes-Darcy flow method, failed to show this aspect.

Before the assessment and analysis of the principal permeabilities, it is essential to

verify that the assumed major flow directions (i.e., X, Y and Z axes) did not coincide

with the principal directions, i.e., there was a significant offset between the principal and
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Figure 2.13: Normalized difference between the computed permeability tensor (K) and the
corresponding principal permeability tensor (Keig), obtained using the Closure-formulation and
Stokes-Darcy flow methods, for (a) 2-D unit-cell (size 1900 µm) and (b) 3-D unit-cell (size 300
µm). For the 2-D unit cells in (a) RP indicates Rectangular Particles and EP indicates Elliptical
Particles. For the 3-D unit cells in (b) CP represents Cylindrical Particles and EP represents
Ellipsoidal Particles.

laboratory coordinate systems. This is done by demonstrating a large relative difference

between the tensorsK andKeig(= diag(K1,K2,K3)), obtained from both the permeability

estimation methods for the largest unit-cell (size 1900 µm) across different AR for both

the rectangular and elliptical particle models. Note that the standard Euclidean norm

(i.e.
√∑

ij A
2
ij) of a tensor (|A|) is used for the scalar estimate of the difference between

the two tensors. When the AR is increased from 1.0 to 7.0, Fig. 2.13a illustrates that

this difference increases from 0% to 71%-63% for the 2-D rectangular-particle models and

from 0% to 73%-76% for the 2-D elliptical-particle models. (Note that the former number

in % corresponds to the Stokes-Darcy result while the latter to the closure-formulation

one.) Of course, for AR 1.0, the system tends to be isotropic and hence K = Keig in

that case. But, as the model progressively turns anisotropic, these permeability tensors

become more distinct and the designed particle configuration resulted in a wide difference

between the aforementioned coordinate systems.

Table 2.10 lists the principal permeability components and the anisotropy ratio for the

largest unit-cell (size 1900 µm) for both the particle shapes and the solution methods.

K1 and K2 are the maximum and minimum principal permeabilities. Similar to the
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observations reported by Weitzenböck et al. [19], the range of measured effective permeab-

ilities were found to be bounded by these principal permeability values. (Note that the

permeability of isotropic media is independent of any special measurement direction and

therefore searching for principal angles is irrelevant in such cases. It is for this reason

the principal angle columns for the isotropic models have been marked as NA or ‘Not

Applicable’ in Table 2.10.) Our initial assignment of the Constant angle (see Table 2.1)

for producing anisotropy in the medium is reliably verified by the principal angle (θ1)

column (measured with respect to the X-axis) in Table 2.10 as the latter, despite the

scatter in particle orientations, is found to be very close to the former. The second

principal angle (θ2) meant to point towards the direction of minimum permeability (K2)

is expected to be approximately at 135◦ with respect to the X-axis. The angle θ2 is found

using the Stokes-Darcy flow method by adding an additional angle of 90◦ to θ1.

(For obtaining the principal angle results from the closure-formulation method, we

used the standard procedure for finding the angle between two-vectors based on their

dot-product. Here, we first find the principal components of the calculated permeability

tensor using the regular eigenvector and eigenvalue operations on the matrix, and then

compute the principal angles (θ1 and θ2) by finding the dot-product between the obtained

eigenvectors of the permeability tensor and a unit-vector along the X-axis. Therefore,

the dot-products obtained through this method provide the principal angles with respect

to the X-axis.)

It is important to point out that the closure-formulation method successfully and quite

accurately produced the expected principal angle results, θ1 and θ2, for all the studied

aspect ratios, and that too without needing any physical-parameter inputs. Hence,

this technique may prove to be valuable for researchers seeking a simple and effective

way to decipher the principal directions of an anisotropic porous sample without actual

experimentation. Finally, we see almost three-to-four fold increase in the Anisotropy ratio
4NA stands for Not Applicable.
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Table 2.10: Principal permeability components (K1, K2, θ1, and θ2) and the Anisotropy ratio
(Ak) for the 2-D unit-cell (size 1900 µm) across different aspect ratios for both the permeability
estimation methods. All principal angles are measured with respect to the X-axis. (Units:
Principal Permeability (×10−10 m2) and Principal angle (◦).)

Aspect
ratio

Permeability
method

Particle
shape

Principal
Permeability

Principal
angles

Anisotropy
ratio

(AR) K1 K2 θ1 θ2 Ak

Rectangle 2.29 2.29 NA4 NA4 1.00Stokes-Darcy flow
Ellipse 3.00 3.00 NA4 NA4 1.00
Rectangle 2.50 2.49 NA4 NA4 1.00

1.0
Closure-formulation

Ellipse 2.99 2.99 NA4 NA4 1.00
Rectangle 2.69 1.23 44.4 134.4 2.19Stokes-Darcy flow
Ellipse 3.21 1.43 44.1 134.1 2.24
Rectangle 2.38 1.41 43.8 133.9 1.69

3.5
Closure-formulation

Ellipse 2.84 1.41 43.9 134.1 2.01
Rectangle 2.79 0.92 44.4 134.4 3.03Stokes-Darcy flow
Ellipse 2.92 1.00 44.1 134.1 2.92
Rectangle 2.20 1.02 44.0 134.1 2.16

5.0
Closure-formulation

Ellipse 2.52 0.92 44.1 133.8 2.74
Rectangle 2.53 0.66 44.8 134.8 3.83Stokes-Darcy flow
Ellipse 2.52 0.62 44.6 134.6 4.06
Rectangle 2.09 0.69 44.4 133.9 3.03

7.0
Closure-formulation

Ellipse 2.23 0.48 44.5 134.6 4.65

(Ak =
K1

K2
) [53,88] on increasing AR from 1.0 to 7.0, which clearly indicates a generation of

anisotropy through particle elongation in the models in contrast to their initial isotropic

states.

After a thorough investigation of variation in permeability in the 2-D models, we gain

more confidence in the closure-formulation method and proceed to inspect the results for

3-D models along similar lines.

2.4.3.2 3-D models

The 3-D permeability results corresponding to different parameters including the unit-

cell size, aspect ratio (AR), particle shape, and the estimation methods are tabulated in

Table 2.11. Similar to the 2-D case, the off-diagonal terms, which are significantly smaller
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than the diagonal terms, are treated as numerical errors and equated to zero.

At this point, it is important to note that since the particles in the 3-D models are

only inclined in the X-Z plane, therefore much of the permeability change across different

AR values is expected to be observed in this plane’s tensor component (Kxz), whereas

trivial changes are anticipated in the remaining off-diagonal components, Kxy and Kyz.

We first investigate the variation in permeability with changes in unit-cell size. As

shown in Table 2.11, when the unit-cell size is varied from L = 200µm to 300µm,

the permeability tensors for the pairs of unit-cells with similar ARs were found to be

reasonably close for both the methods. For example, if we examine the 3-D cylinder unit

cells of sizes 200 µm and 300 µm with AR 1.0 in Table 2.11, then the permeability tensors

predicted by both the methods are fairly close. However, the minor differences between

such 3-D tensors can be ascribed to the variance in the particle angles associated with

different unit cells and the presence of a third dimension which offers the fluid more space

to flow around the obstacles (unlike the 2-D models where the fluid flow is restricted to

two dimensions).

Next, we inspect the evolution in permeability with variation in aspect ratio of the

particles. As the AR increases, the particles become stretched along 45◦ direction from

the X-axis in the X-Z plane. Consequently, this leads to alignment and lengthening

of streamlines around the particles along this direction which results in an increased

permeability component, Kxz, similar to the Kxy component in the 2-D case (see parts

(c) and (d) of Fig. 2.12). Hence, due to increased fluid flow in this direction, this angle

is understood to point towards the direction of maximum permeability in the model.

Employing the principle of orthogonality of the principal directions of the permeability

tensor, the other principal directions can also be guessed: one, perpendicular to this

direction in the same plane, i.e. roughly at 135◦ from the X-axis in the X-Z plane; and

the other, orthogonal to this plane (i.e., along the Y-axis). Later, we shall see that the

former indicates lower of the two principal permeabilities lying in the X-Z plane, whereas
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Table 2.11: The permeability tensors computed for 3-D models corresponding to different:
1) unit-cell sizes, 2) aspect ratio (AR), 3) particle shape, and 4) permeability estimation
methods. The porosity across the unit cells is 0.90 and the radius of an ellipsoid particle for
the AR 1.0 case is 28.79 µm.

Unit-cell Aspect ratio Permeability tensor (×10−10 m2)

size (µm) (AR)
Particle shape

Stokes-Darcy flow Closure-formulation

Cylinder


4.33 0.00 0.00

0.00 4.50 0.00

0.00 0.00 4.33




4.24 0.00 0.00

0.00 4.38 0.00

0.00 0.00 4.25


1.0

Ellipsoid


5.24 0.00 0.00

0.00 5.24 0.00

0.00 0.00 5.24




5.10 0.00 0.00

0.00 5.11 0.00

0.00 0.00 5.10



Cylinder


4.47 0.02 0.52

0.02 3.82 0.00

0.52 0.00 4.50




4.43 0.00 0.12

0.00 3.70 0.00

0.11 0.00 4.45


1.5

Ellipsoid


5.43 0.00 0.51

0.00 4.47 0.00

0.51 0.00 5.46




5.26 0.00 0.30

0.00 4.30 0.00

0.30 0.00 5.28



Cylinder


4.53 0.02 0.61

0.02 3.36 0.00

0.61 0.00 4.57




4.53 0.00 0.22

0.00 3.09 0.00

0.23 0.00 4.57


2.0

Ellipsoid


5.35 0.00 0.76

0.00 3.77 0.02

0.76 0.02 5.39




5.20 0.00 0.47

0.00 3.58 0.00

0.46 0.00 5.23



Cylinder


4.61 0.00 0.78

0.00 3.04 0.00

0.78 0.00 4.65




4.73 0.02 0.37

0.02 2.56 0.01

0.37 0.14 4.67
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200

2.5

Ellipsoid


5.27 0.04 0.97

0.04 3.28 0.00

0.97 0.00 5.32




5.12 0.02 0.57

0.00 2.98 0.00

0.59 0.00 5.18



Cylinder


4.31 0.00 0.00

0.00 4.46 0.00

0.00 0.00 4.31




4.23 0.00 0.00

0.00 4.38 0.00

0.01 0.00 4.23


1.0

Ellipsoid


5.38 0.00 0.00

0.00 5.38 0.00

0.00 0.00 5.38




5.14 0.00 0.00

0.00 5.14 0.00

0.00 0.00 5.14



Cylinder


4.54 0.02 0.65

0.02 3.79 0.01

0.65 0.01 4.57




4.43 0.00 0.12

0.00 3.70 0.00

0.11 0.00 4.44


1.5

Ellipsoid


5.43 0.00 0.41

0.00 4.45 0.00

0.41 0.00 5.46




5.25 0.00 0.29

0.00 4.33 0.00

0.29 0.00 5.27



Cylinder


4.63 0.05 0.70

0.05 3.27 0.04

0.70 0.04 4.66




4.51 0.01 0.17

0.00 3.09 0.00

0.21 0.02 4.58


2.0

Ellipsoid


5.40 0.00 0.86

0.00 3.72 0.00

0.86 0.00 5.43




5.23 0.00 0.47

0.00 3.58 0.00

0.45 0.33 5.25



Cylinder


4.70 0.02 0.78

0.02 2.88 0.00

0.78 0.00 4.74




4.59 0.06 0.34

0.00 2.63 0.01

0.35 0.12 4.59



300

2.5

Ellipsoid


5.33 0.00 1.07

0.00 3.17 0.00

1.07 0.00 5.37




4.99 0.06 0.64

0.00 3.02 0.02

0.57 0.03 5.11
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the latter works out to be the lowest of all the principal permeabilities. Also, with

the increase in AR, the particle surface-area also increases (especially the particle area

projected onto the X-Z plane), which results in greater obstruction to fluid flow along

the Y-axis direction, and therefore a declining trend in the permeability component

Kyy is rightly witnessed. Note that both the permeability estimation methods display

this anticipated trend unambiguously. In the present study, permeability is expected

to increase more along 45◦ from the X-axis in the X-Z plane, i.e., the Kxz and Kzx

components of the tensor, when compared to the other off-diagonal terms, are expected

to be higher. This can be inferred from the flow directions shown in Fig. 2.14, where during

the measurement of effective permeabilities KII and KIV , the fluid flow path is observed

to be heavily impeded by the obstacles which results in lower permeability values for these

directions. However, in the case ofKV I , the fluid flows along the direction of the elongated

obstacles (i.e., Constant angle ‘α’) which is the path of least resistance for the fluid and

thus it leads to an increased permeability value for Kxz relative to the other off-diagonal

components. Both the permeability estimation methods produce results that agree with

this observation. It should also be noted that the closure-formulation method successfully

reflected the trends (in the permeability tensor values for components Kxx and Kzz) as

produced by the Stokes-Darcy flow method across different AR for both particle shapes.

For example, an increasing trend is noted in the Kxx component value for the cylindrical

particle model across AR 1.0 to 2.5 for the 3-D unit cells of size 300 µm based on the

Stokes-Darcy method. The closure-formulation method successfully displayed a similar

trend in its permeability tensor values for the component K11. This is an important

outcome which improves one’s confidence in the ability of this latter volume-averaging-

method based technique for permeability estimation of anisotropic porous samples based

only on microstructural information.

When the AR is changed from 1.0 to 2.5, the average permeability along the Y-axis

direction, i.e. the Kyy component, is noted to decrease by 34%-41% for the cylindrical-

45



www.manaraa.com

Figure 2.14: Fluid flow directions for measurement of effective permeabilities KII , KIV and
KV I . Note that the flow paths are severely impeded by the presence of obstacles in the first two
cases, thereby leading to reduced effective permeability values in these two directions, whereas
the path of least resistance for fluid flow is offered in the case of KV I which eventually leads to
a relatively higher permeability value for the tensor component Kxz. (The • in the coordinate
system icon represents the z/x-axis pointing out-of-plane whereas × indicates the y-axis pointing
into-the-plane.)

and by 39%-41% for the ellipsoidal-particle models. Also, for AR 2.5, the average value

of the off-diagonal component Kxz is found to increase to 19%-9% and 22%-14% of the

main diagonal terms for cylindrical and ellipsoidal particle models, respectively. (Note

that the first % value correspond to the Stokes-Darcy result, while the second one to the

closure-formulation one.)

We now explore the numerical results corresponding to the two particle shapes used in

this study. From Table 2.11, it is clear that both the methods predict higher permeability

values for the ellipsoidal obstacles as compared to their cylindrical counterparts. Based

on the geometrical characteristics, the smooth shape of an ellipsoid facilitates fluid flow,

whereas the sharp edges of a cylindrical particle hinder streamlined flow. This can be the

reason behind the permeability difference observed between these two differently shaped

particle models. Also, the permeability values for the ellipsoidal particle models remained

higher than the cylindrical ones across the entire aspect ratio range under study. This

can be explained based on similar reasoning provided for the pattern of permeability

differences observed between the 2-D ellipse and rectangle particle models. The surface

areas for both the cylindrical and ellipsoidal particles continues to grow with increasing
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Table 2.12: Principal permeability components (K1, K2, K3, θ1, θ2 and θ3) and the Anisotropy
ratio (Ak) for the 3-D unit-cell (size 300 µm) across different aspect ratios for both the
permeability estimation methods. All principal angles are measured with respect to the X-
axis. (Units: Principal Permeability (×10−10 m2) and Principal angle (◦).)

Aspect
ratio

Permeability
method

Particle
shape

Principal
Permeability

Principal
angles

Anisotropy
ratio

(AR) K1 K2 K3 θ1 θ2 θ3 Ak

Cylinder 4.46 4.31 4.31 NA5 NA5 NA5 0.99Stokes-Darcy flow
Ellipsoid 5.38 5.38 5.38 NA5 NA5 NA5 1.00
Cylinder 4.38 4.23 4.23 NA5 NA5 NA5 0.98

1.0
Closure-formulation

Ellipsoid 5.14 5.14 5.14 NA5 NA5 NA5 1.00
Cylinder 5.20 3.91 3.79 45.7 135.5 92.8 0.84Stokes-Darcy flow
Ellipsoid 5.86 5.03 4.45 46.0 136.0 90.0 0.82
Cylinder 4.55 4.32 3.70 45.0 137.5 90.0 0.83

1.5
Closure-formulation

Ellipsoid 5.55 4.97 4.33 46.0 136.0 90.0 0.82
Cylinder 5.34 3.95 3.27 45.6 135.6 88.7 0.71Stokes-Darcy flow
Ellipsoid 6.28 4.55 3.72 45.5 135.5 90.0 0.70
Cylinder 4.74 4.35 3.09 53.0 137.2 90.5 0.68

2.0
Closure-formulation

Ellipsoid 5.70 4.78 3.58 45.2 136.1 90.0 0.69
Cylinder 5.50 3.94 2.88 45.6 135.7 90.7 0.62Stokes-Darcy flow
Ellipsoid 6.42 4.28 3.17 45.6 135.5 90.0 0.60
Cylinder 4.93 4.25 2.63 45.6 134.4 88.8 0.57

2.5
Closure-formulation

Ellipsoid 5.66 4.44 3.02 46.4 139.3 88.4 0.60

AR; however, the contact area of the cylinders continually remains greater than that of

the ellipsoids for all the aspect ratios in this study. Therefore, for a pre-set porosity, the

permeability of the cylindrical obstacle models continues to remain smaller than their

ellipsoidal counterparts.

As illustrated in Fig. 2.13b, a significant relative difference between K and Keig for

the larger unit cell (size 300 µm) for both the particle shapes and permeability estimation

methods suggests that the principal and laboratory coordinate systems did not overlap.

When the AR is increased from 1.0 to 2.5, Fig. 2.13b shows the difference to increase

from 0% to 34%-37% for 3-D cylinder particle models and from 0% to 37%-35% for

3-D ellipsoid particle models. (Note that the former number in % corresponds to the
5NA stands for Not Applicable.
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Stokes–Darcy result while the latter to the closure-formulation one.)

The principal permeability components and anisotropy ratios for the larger unit cell

(size 300 µm) are tabulated in Table 2.12. Out of the three principal permeabilities: K1

represents the maximum, K2 the intermediate andK3 indicates the minimum permeability.

Further, the corresponding principal directions are given by θ1, θ2 and θ3, respectively.

The principal angles in the 3-D case were obtained through the standard eigenvector

operation on permeability matrices, similar to the one discussed in Section 2.4.3.1 for the

2-D models. Again, the principal angles for isotropic models have been marked as NA

or ‘Not Applicable’ in Table 2.12. As pointed out beforehand, the results confirmed that

the largest principal-permeability lay close to 45◦ to the X-axis in the X-Z plane (equal

to the pre-set Constant angle ‘α’), the intermediate principal-permeability value was

approximately at 135◦ from the X-axis in the same plane, and the smallest principal-

permeability value was noted to be along the Y-axis (90◦ to the X-axis). Overall,

the principal angles obtained from the closure-formulation method were found to be

quite accurate when compared to the anticipated values and to those predicted by the

Stokes-Darcy flow method. Again, this suggests that this volume-averaging-method based

technique can prove to be a reliable tool for not only estimating the accurate permeability

tensor, but also for predicting the principal directions of anisotropic porous samples

without any actual experimentation. Clavaud et al. [89] have defined the Anisotropy

ratio (Ak) for a 3-D permeability tensor as

Ak =
Kmin√

Kint ·Kmax

(2.15)

where Kmin, Kint and Kmax are the minimum, intermediate and maximum values of the

principal-permeability components, respectively. A higher Ak value suggests the porous

medium to be closer to being isotropic, whereas lower values indicate highly anisotropic

media. A study of Table 2.12, where the principal permeability values from both the

methods are presented, suggests that with an increase in AR, the Ak values markedly
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decrease for the 3-D models, thereby confirming the presence of higher anisotropy in

configurations with elongated particles.

2.4.3.3 Comparison of CPU times for the Closure-formulation and Stokes-Darcy flow

methods

This numerical study was performed using the commercial FEM software, COMSOL

Multiphysics on a single Intel® Core i9-9820X powered CPU with 128 GB of physical

memory. The machine allows parallel processing on its 10 cores and 20 logical processors

(total threads) at 3.30 GHz microprocessor frequency with 16.5 MB shared cache per

processor. COMSOL’s default Windows platform setting permits the job to run on

all available physical cores of the system, thus allowing shared-memory processing and

promoting maximum utilization of the available resources. Next, COMSOL automatically

optimizes its solver settings to robustly solve the multiphysics problems, which leads to

faster convergence rates and eventual minimization of the computational times. To briefly

mention, the Direct solver using the Fully Coupled algorithm was found suitable for the

closure-formulation method, whereas the Algebraic Multigrid (AMG) solver executing

the same algorithm was set for the Stokes-Darcy flow physics. For confirmation, the

solver settings were manually permuted and compared, but the fastest solution times for

the methods were obtained for COMSOL’s recommended settings. Apart from the solver

settings, the CPU time is strongly dependent on other parameters such as the relative

tolerance, which was tightly set to 10−3 for obtaining accurately converged results, the

mesh type, and the mesh size (discussed in Section 2.4.2).

To compare the CPU times for both the methods, it is useful to define a comparative

variable, τ, as follows

τ =
Total CPU time for the Stokes-Darcy flow method
CPU time for the Closure-formulation method

(2.16)

where the total CPU time for the Stokes-Darcy flow method is the sum of solution times
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Figure 2.15: A comparison of relative CPU times using the artificial variable τ corresponding
to different unit-cell sizes and aspect ratios (AR) for (a) rectangular particles, and (b) elliptical
particles, in the 2-D domain; (c) cylindrical particles, and (d) ellipsoidal particles, in the 3-D
domain.

for simulations in different orientations as described in Section 2.3.2. On the other hand,

for the closure-formulation method, it is equal to the solution time of a single simulation

for both 2-D and 3-D models.

Based on the absolute computational time data collected for the Stokes-Darcy flow

method, the simulation periods corresponding to the 3-D specimens were found to be 1-2

orders-of-magnitude higher than that of the 2-D models. This is true to the expectation

based on the increased mesh elements and hence higher degrees-of-freedoms (∼N3 in

3-D compared to ∼N2 in 2-D) to be solved in the 3-D case. To provide an overview

of the collected CPU time data and allow easy comparison, the ratio of computational

times corresponding to both the methods in terms of the defined variable, τ, is plotted

in Fig. 2.15.
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Let us first analyze the τ for the 2-D models. As can be observed in Fig. 2.15a and

Fig. 2.15b, τ is close to 1 for the majority of the 2-D isotropic unit cells studied (i.e.,

unit cells with AR 1.0). This value was found to be greater than 1 for most of the 2-

D ‘rectangle’ unit-cells, whereas the results were mixed for the 2-D ‘ellipse’ unit-cells.

Since the permeability for isotropic models was calculated using only a single Stokes-

Darcy flow simulation, the τ value indicated that the closure-formulation method could

produce the permeability results for such models with CPU time comparable to the

Stokes-Darcy flow method. However, as the models increasingly turned anisotropic, the

most important information inferred from these figures is that τ was greater than 1 for all

but a few of the numerical simulations. This clearly highlights the closure-formulation’s

ability to provide faster permeability results for the anisotropic models. This can be

explained based on the number of simulations required to solve the permeability tensor

using the Stokes-Darcy flow method, which is 3 for the 2-D case, as compared to a

single simulation required in the closure-formulation approach. In general, τ was found to

decrease with an increase in unit-cell size and aspect ratio (AR). This can be attributed

to the increase in number of elements required to mesh a larger or more asymmetric

model which translates to considerably higher degrees-of-freedom to be solved in such

cases. Consequently, the overall computational time increased for both the Stokes-Darcy

flow and closure-formulation methods. However, τ was observed to be more sensitive to

the increase in latter’s CPU time as compared to the relatively smaller time-increments

occurring in the numerator of Eq. (2.16). This probably led to an overall decline in the τ

value with the increase in unit cell size or AR or a combination of both.

The importance of computational-time savings became clearly evident when investigat-

ing the 3-D models where greater number of simulations were required to evaluate the

permeability tensor using the Stokes-Darcy flow method. The CPU-time comparison data

for the 3-D models comprised of cylindrical and ellipsoidal-shaped particles is presented in

Fig. 2.15c and Fig. 2.15d, respectively. It can be seen that τ shows a higher and increased
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range between 1 to 130 for the considered particle shapes and unit-cell sizes, suggesting

drastically lesser CPU time associated with the usage of the closure-formulation method.

As previously pointed out for the 2-D models as well, the lowest τ values were observed

for the isotropic unit cells where a smaller number of simulations were involved to find

the permeability tensor. Next, with the increase in unit-cell size and aspect ratio (AR),

the number of mesh elements required to discretize the 3-D unit cells also increased, thus

leading to inflated CPU times for both the permeability estimation methods. However,

in the 3-D case, the computational time involved in the Stokes-Darcy flow simulations

was noted to be significantly higher. This was caused by (a) increased CPU time for

each pressure-gradient orientation, and (b) accounting for 6 different simulation runs, in

contrast to the relatively smaller time-increment involved in a single run of the closure-

formulation method. These factors evidently led to an increase in the τ value. Also, the

cylindrical-particle models showed higher τ values when compared to their ellipsoidal

counterparts. This is because the sharp edges of cylinder particles require more mesh

elements to discretize and resolve the velocity gradients near the cylinder boundaries,

which perhaps led to increased solution times when compared to the ellipsoidal particle

models.

Overall, no proper trend could be inferred for τ in the 3-D case except for the fact that

the closure-formulation method undoubtedly provided significantly faster computational

results as compared to the widely used saturated linear flow permeability estimation

technique [11, 18, 19, 53, 88, 90]. In addition, the closure-formulation method repeatedly

saved significant additional time involved in changing the solver’s boundary-condition

settings for multiple orientations involved in the Stokes-Darcy flow method. As real-world

objects are mostly anisotropic, this study puts forward a strong case for Whitaker’s

closure-formulation [81, 82] by showcasing its clear advantages in terms of saving the

computational and setting-up times, and resource savings.
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2.5 Summary and Conclusions

Permeability estimation in porous media is a vital area of study and a subject of intensive

research in composites manufacturing and numerous other applications. The rise in

computational power and scanning technology has enabled the researchers to estimate

the permeability directly from 2-D and 3-D micrographs. In this chapter, two different

computation-based, permeability-estimation methods were tested using artificially-prepar-

ed porous-media models. First of these methods included the Stokes-Darcy flow method

that uses the Darcy’s law to extract the permeability tensor from the 1-D Stokes flow

simulations along the prepared unit cells in different directions. The second method is

the closure formulation method that is extracted from the volume averaging method used

by Whitaker [82] to upscale the Stokes equation at the micro (pore) scale to the Darcy’s

law at macro (lab) scale.

The closure-formulation method was validated by comparing the simulation results

with Lasseux et al.’s implementation ([87]) and a good agreement was achieved, thereby

establishing the accuracy of our numerical solution. Also, the results obtained from

the closure-formulation and Stokes-Darcy flow methods were found to compare well

with the predictions from a few established theoretical permeability models (the Gebart

model, the Bruschke & Advani model, and the Kozeny-Carman model), thereby further

corroborating the accuracy of the two methods.

The models for artificial porous media were synthesized from unit cells populated with

rectangle-like and ellipse-like solid particles. The models were based on three different

parameters: unit-cell size, particle shape, and aspect ratio of the particles. In the 2-D case,

four unit-cell sizes, four aspect ratios and two particle shapes were used in the study. The

Stokes-Darcy flow method used fluid properties (viscosity and density) for permeability

estimation, whereas the closure-formulation method, not needing such inputs, provided

highly accurate permeability results solely based on the microstructural information
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available at the pore scale level. In the 3-D part of the study, two unit-cell sizes, four aspect

ratios and two particle shapes were employed. Based on the permeability tensors obtained

from both the methods, the closure-formulation technique produced results which were

consistent with the anticipated outcomes and quite close to those predicted by the Stokes-

Darcy flow method. Here, it is important to recall that achieving permeability value

within the same order of magnitude is often considered creditable in any permeability-

prediction study [90]. In the present work, the closure-formulation method betters this

expectation by achieving much higher match with the Stokes-Darcy flow method for all

but a few cases. Hence, this study offers a substantial leap over the research done with

this technique till date involving relatively simple isotropic models [52, 65,80].

Another important aspect of this study was to test if the closure-formulation method

could effectively predict the principal directions of an anisotropic porous media. In

both the 2-D and 3-D cases, this technique quite accurately determined the principal

angles which closely matched those obtained from the Stokes-Darcy flow method. Hence,

this method can prove to be an important addition to the arsenal of tools meant for

estimating the principal directions of an unknown anisotropic porous sample without any

experimentation.

A unique CPU-time-comparison study was performed for comparing the two methods

by defining a variable, τ, as the ratio of the computational time used by the Stokes-

Darcy flow method to that by the closure-formulation method. Primarily due to the fact

that only a single simulation involved in the closure-formulation process, the closure-

formulation technique was substantially faster for a majority of the 2-D, and all of the

3-D anisotropic models. This advantage was spectacularly displayed in the 3-D case where

the permeability obtained using the closure-formulation simulations were up to 130 times

faster than the one obtained using the conventional Stokes-Darcy flow method! Overall,

no definite trend for τ could be identified, which is plausible, since it is expected to

heavily depend on the microstructural details of the porous models; however, the closure-
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formulation method clearly led to large computational time savings in contrast to the

widely adopted Stokes-Darcy flow method.
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CHAPTER 3

Modeling Transport and Adsorption of Tracer Species.

Part I: Theoretical Developments

3.1 Literature Review

1The presence of arsenic in water is gravely injurious to human health. Exposure to this

element leads to many skin-related, gastro-intestinal, neurological, and cardiovascular

problems. Upon its consumption, the carcinogenic nature of arsenic gives rise to several

types of cancers, including skin, lung and bladder cancers [91]. Contamination of water

by arsenic is a problem that afflicts several parts of the world. Countries in the west,

including Argentina, USA and Canada, to countries in the east, including Bangladesh,

India and China, are affected by the presence of arsenic [92].

The bodies of water most affected by the problem of arsenic pollution are aquifers,

which are groundwater sources. The arsenic primarily present in such sources are oxy

anions with primarily two different oxidation states: arsenite (As(III)) and arsenate

(As(V)) [92]. Although the arsenic can naturally dissolve into these sources of water due

to its presence in the surrounding bedrock, this arsenic contamination can be exacerbated,

especially in areas of Asia, through numerous human activities such as mining, smelting,

using coal for power generation, and using agricultural pesticides [93].

Several water filters based on a host of separate technologies are available in the market

place. These include reverse osmosis (RO), activated carbon, activated alumina, anion
1The chapter has been published in the form an invited paper as following:

a) Pillai, K. M. and Raizada, A. Modeling Transport and Adsorption of Arsenic Ions in Iron-Oxide Laden
Porous Media. Part I: Theoretical Developments. Water 2021, 13, 779.
The contributions of Aman Raizada include original draft preparation, review and editing of the
manuscript.
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exchange, and distillation. Except for RO and distillation, all other methods involve

forcing contaminated water to flow through a porous medium made from particles or

beads. As the water comes in contact with the walls of porous media, the dissolved arsenic

ions are captured by the walls through mechanisms such as anion exchange or sorption.

The high surface area of porous media comes in handy for this ‘capture’. This process

can be modeled with the help of a convection-diffusion equation since the extremely

low concentration of arsenic in water (typically in ppb or parts-per-billion2) allows the

tracer-type species transport equations to handle the migration and absorption of this

element. As a result, the modeling of arsenic transport and capture in any off-the-shelf

water filter for arsenic is quite similar to the modeling of arsenic transport and capture in

groundwater. We will be taking our inspiration and methodology for solving this problem

in filters from the rather well-studied problem of contamination of groundwater by arsenic

(or by any other toxic heavy metal such as lead).

In the fields of environmental engineering, soil sciences, geosciences and underground

hydrology, contamination of groundwater flow is a well-researched problem. The large

porous bodies, made of sand or similar particulate matter lodged between layers of rocks,

hold a tremendous amount of groundwater and are called aquifers. The wells are drilled

into these aquifers to extract water for human consumption. These aquifers exchange

water with streams, rivers and ponds and hence the contamination in these water bodies

is often passed on to the aquifers. The aquifers can also be contaminated by the nuclear,

chemical and other type of wastes buried underground. The contaminated water traveling

through the porous aquifer can get filtered due to the ion absorption process by solid

particles as well as the action of bacteria. Hence, the concentration of contaminants may

change with space and time during groundwater flow. Prediction of the contamination

of aquifers is a big challenge that is being addressed by scientists in several countries.

The flow of water inside aquifers is modeled using the Darcy’s law, and the transport
2According to the WHO guidelines, the acceptable concentration of arsenic in safe drinking water is

less than 10 ppb.
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of contaminants is modeled using the convection-dispersion equation for predicting the

transport and attenuation of dissolved species due to adsorption and biological activity [94].

As mentioned earlier, the physics for modeling the transport and adsorption of contamina-

nts is exactly identical to the transport and adsorption of arsenic in a water filter. Here

we will describe the work that has already been done in this area as well as the limitation

of that work.

Numerous analytical solutions have been developed for modeling solute transport

through fully-saturated aquifers [95–107]. However, there are some shortcomings associated

with them. For example, the dispersion tensor is simplified without any justification—it

is merely presented as a constitutive relation without any correlation with the pore-scale

microstructure and the phenomena occurring therein [94]. Several times, the dispersion

tensor is overly simplified after dropping the molecular diffusivity contribution [95,97,100]

or simply treated as a constant [98,102,104].

On the other hand, several stochastic groundwater modeling techniques have been

proposed to study the transport of solute in natural porous formations like aquifers with

variable permeability [108–110]. Dagan [109] explained that the spatial distribution of

solute in such porous structures is mostly governed by convection and the heterogeneity

of permeability on a large scale. In these cases, the marginal effect of pore-scale dispersion

is generally neglected owing to the smallness of the transverse dispersivity with respect

to the heterogeneity scale. Aldo [110] furthered this study [109] and investigated the

influence of the pore-scale dispersion mechanism in an heterogeneous aquifer under both

the ergodic and nonergodic transport conditions. In the same vein, Rubin [111] presented

the stochastic formulations of the advection-dispersion equation to model the transport

of tracer species in heterogeneous porous media. Such mathematical models are often

based on the assumptions of stationarity, ergodicity, and gaussian distribution, and seek

geostatistical parameters for stochastic modeling. These approaches have earned some

success in correlating different length-scales and are able to predict the results of large-
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scale controlled field experiments [112,113]. However, they lack the ability to account for

the influence of pore-level microstructural details in the formulation of the total dispersion

tensor, which needs further development. In the proposed research described below, we

will develop a more comprehensive analysis for species transport using a micro-macro

coupling that can remove the above-mentioned shortcomings and lead to an important

advance in this area.

The method of volume averaging is a rigorous method to upscale from the pore

scale to the macroscopic lab or field scale [82, 114, 115]. The use of this method in

understanding and predicting mass transport in porous media has had a long history,

and a brief synopsis is presented here. One of the first attempts to understand and

model diffusion and hydrodynamic dispersion in porous media can be attributed to

Whitaker [77]. Gray later [116] suggested an improvement in Whitaker’s formulation by

suggesting the estimation of the deviations from the intrinsic phase-average (instead of

the phase-average) for the concentration of the solute. Attempts were made to understand

hydrodynamic dispersion in capillary tubes representing porous media, which led to the

confirmation of the Taylor-Aries model [117]. Later the same ideas were applied to develop

a one-equation [118] and a two-equation [119] model for solute transport accompanied

with adsorption in dual length-scale heterogeneous porous media. The volume averaging

method was then adapted to find the effective dispersion tensor in a heterogeneous

medium, the findings of which were tested using the ensemble averaging process [120].

The two-equation model was later employed to estimate the macroscopic properties of

an ideal heterogeneous porous medium and a parametric study was conducted to study

the effect of the Péclet number, permeability ratio and local-scale dispersitivity on the

dispersion coefficient [121].

In this chapter, we will employ the volume averaging method to upscale the phenome-

non of solute transport (which include both diffusion and advection) accompanied with

adsorption in homogeneous porous media. Such media are found in commercial water
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filters where the cartridges created by packing particles or beads that can be assumed

to be of mono-modal size distribution and thus create single-scale porous media. It may

seem that the solution to this relatively simple problem should exist somewhere in the

volume-averaging literature. However, our investigation revealed that bits and pieces of

this problem exist piecemeal at different locations. For example, similar problems on

diffusion without advection, and accompanied with adsorption, have been formulated

as practice problems by Whitaker in his monograph (Problems 4 and 25 in Chapter 1

of [82]). Later, solving the same problem after including the advection has been presented

in Problem 13 of Chapter 3 on dispersion; however, it is presented without any solution.

Similarly, Plumb and Whitaker [122] presented the upscaling theory corresponding to

diffusion, adsorption and advection in porous media composed of porous particles in

Section 5 of [122]. This one-equation model approach was a multi-scale treatment that

involved lower-scale averaging inside what will be our solid phase here.

One can cite some more of the similar developments in the volume averaging method

that are related to the proposed formulation. Whitaker in Chapter 1 of [123] illustrated

the use of the volume averaging procedure and the boundary conditions required to

derive the upscaled convective-dispersion equation with nonlinear adsorption for species

transport. Wood et al. [124] developed a volume-averaged macroscale transport equation

for a reactive chemical species and compared the effective reaction rate obtained from

the closure formulation to that from the direct numerical simulation at the microscale.

Similarly, Valdès-Parada et al. [125] carried out upscaling of mass transport equations

along with diffusion and convection based reaction processes in porous media. In the

same vein, the work by Quintard et al. [126, 127] had some useful developments for the

interfacial boundary condition for the moving-phase velocity.

Hence, we had to gather and develop all the relevant aspects of the upscaling physics

for the considered practical problem of developing for arsenic water filters the upscaled

governing equation and the associated closure problem. A researcher experienced in the
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volume average method may find several portions of the chapter repetitions of what

is available in the literature; however, we feel that all the main derivations should be

presented in the chapter here in order to improve its readability and bring diverse aspects

into a single presentation.

3.2 Model for solute transport

3.2.1 Mathematical Preliminaries and Definitions

The volume averaging method will be used to upscale from the microscopic space to

the macroscopic one. This means that the governing equations and boundary conditions

for the large-scale space will be derived from the governing equations plus boundary

conditions for the small-scale space. We will start with some basic definitions.

3.2.1.1 Representative Averaging Volume

The representative elementary volume (REV) plays an important conceptual role in

upscaling of porous media processes. As shown in Figure 3.1, it is often taken to be

of a spherical form. Our problem is classified as the single-phase flow through porous

media. Hence, there is a phase called β phase that flows between the stationary, non-

deforming solid particles made from the σ phase and completely fills the pores. During

this flow, the ions being carried by the flowing β phase (water) are also moving towards

the σ phase particles and are getting adsorbed by them.

For effective volume averaging, the following constraint is required [82]:

Average Particle Size << ro << Size of the upscaled domain (3.1)

where ro is the size of the REV.
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Figure 3.1: A Schematic of the Representative Elementary Volume (REV) with ro being the
radius of the sphere-shaped volume.

3.2.1.2 Phase and Intrinsic Phase Averages

The phase average 〈φβ〉 for any variable φβ associated with the β phase flowing through

the porous medium is defined as

〈φβ〉 =
1

V

∫
Vβ

φβ dV (3.2)

where V is the volume of the REV. 〈φβ〉 represents the average value of any quantity

within the whole of the REV.

On the other hand, there is an average called the intrinsic phase average, 〈φβ〉β, which

is the average value of any quantity only within the β phase of the REV. Such an average

is defined as

〈φβ〉β =
1

Vβ

∫
Vβ

φβ dV (3.3)

where Vβ represents the volume of the β phase within the REV.

As one can easily see, the relation between the two averages is

〈φβ〉 = εβ 〈φβ〉β (3.4)
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such that εβ is the volume fraction of the β phase given by the relation

εβ =
Vβ
V
. (3.5)

Note that for single-phase flow of the β phase through our porous medium, εβ will be

equal to the porosity of the porous medium, since the latter is defined as the ratio of the

total pore volume within REV to the total REV volume.

3.2.1.3 Averaging Theorems

We will now present two important theorems that are used in the upscaling of transport

and flow equations in porous media. A formal and easy to understand proof of these

theorems can be found in [128], although similar proofs have been presented elsewhere [82,

114,115,129].

First Averaging Theorem

This theorem relates the phase average of a gradient or a divergence of a physical quantity

to the gradient or divergence of the phase average of the quantity. As before, any variable

φβ associated with the β phase flowing through the porous medium will satisfy the

following relationship:

〈∇φβ〉 = ∇〈φβ〉 +
1

V

∫
Aβσ

φβ nβσ dA (3.6)

where nβσ is the unit normal directed from β phase to σ phase, and Aβσ is the interfacial

area between the β and σ phases. In case the variable φβ is a vector, then we deal with

divergence of this quantity as shown below.

〈∇ · φβ〉 = ∇ · 〈φβ〉 +
1

V

∫
Aβσ

φβ · nβσ dA (3.7)
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Second Averaging Theorem

This theorem relates the phase average of a time derivative to the time derivative of the

phase average as follows:

〈∂ φβ
∂t
〉 = ∂〈φβ〉

∂t
− 1

V

∫
Aβσ

φβ w · nβσ dA (3.8)

where w is the velocity of the β − σ interface.

3.2.2 Upscaling by Volume Averaging Method

The governing equation for solute transport within the pore space of an REV can be

expressed as

∂cβ
∂t

+ ∇ · (cβvβ) = ∇ · (Dβ∇cβ) (3.9)

where cβ is the point concentration in the β phase, vβ is the velocity of the β phase,

and Dβ is the molecular diffusivity of the β phase. Note that it is a tracer equation, i.e.,

the concentration of the transported species, cβ, in extremely small. This is a convection-

diffusion type equation where velocity of the fluid β phase is given. (See [130] for a

rigorous derivation of this equation.)

Let us now specify the boundary conditions needed to solve for cβ within the pore

region of an REV. A flux of solute ions is created onto the β − σ interface, which leads

to the rate of increase in the surface concentration of the adsorbed ions. This can be

expressed as −nβσ ·Dβ∇cβ = ∂cad
∂t

, where cad represents the surface concentration on the

β− σ interface. However, our analysis is limited to linear adsorption isotherms and local

mass equilibrium exists at the β − σ interface [117, 118], i.e., cad = Keq cβ. Here, Keq

is the equilibrium coefficient (or the distribution coefficient) corresponding to the linear

isotherm. On combining these two relations, the proposed boundary condition reduces

to
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B.C.1 : − nβσ · Dβ∇cβ = Keq
∂cβ
∂t

, at Aβσ . (3.10)

It is helpful for future analysis to state here the continuity equation for the β phase as

well as the associated no-slip boundary condition at the β − σ interface:

∇ · vβ = 0

B.C.2 : vβ = 0, at Aβσ . (3.11)

On taking the phase-average of Eq. (3.9), we get

〈∂cβ
∂t
〉 + 〈∇ · (cβvβ)〉 = 〈∇ · (Dβ∇cβ)〉 . (3.12)

Let us consider the three terms of this equation one by one. On applying the second

averaging theorem, the first term on the left-hand side of this equation results in

〈∂cβ
∂t
〉 = ∂〈cβ〉

∂t
− 1

V

∫
Aβσ

cβ w · nβσ dA =
∂〈cβ〉
∂t

. (3.13)

The integral term involving the interface velocity w disappears since we have taken

the porous medium to be rigid (non-deforming) and stationary. On applying the first

averaging theorem, the second term on the left-hand side of Eq. (3.12) develops as

〈∇ · (cβvβ)〉 = ∇ · 〈cβvβ〉 −
1

V

∫
Aβσ

cβ vβ · nβσ dA = ∇ · 〈cβvβ〉 . (3.14)

Here the integral term disappears because of the no-slip condition described in Eq. (3.11).

Let us now look into the development of the term on the right-hand side of Eq. (3.12).
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The application of the first averaging theorem leads to the following unfolding:

〈∇ · (Dβ∇cβ)〉 = ∇ · 〈Dβ∇cβ〉 +
1

V

∫
Aβσ

Dβ∇cβ · nβσ dA

= ∇ · 〈Dβ∇cβ〉 −
1

V

∫
Aβσ

Keq
∂cβ
∂t

dA

= ∇ · 〈Dβ∇cβ〉 − Keq
∂

∂t

[
Aβσ
V

1

Aβσ

∫
Aβσ

cβ dA

]
. (3.15)

Here we use B.C.1 given in Eq. (3.10) as well as the facts that (a) Keq is taken as a

constant within the REV, and (b) the time derivative can be taken out of the surface

integral since we are dealing with a rigid (non-deforming) porous medium that ensures

that the interfacial area within the REV remains unchanged. Thus, by implementing

these transformations in the interfacial-flux term within the surface integral, we are able

to include the effect of adsorption into the upscaled mass-transport equation.

At this stage, we introduce two definitions:

(I) aβσ =
Aβσ
V

(3.16)

where Aβσ is the net β − σ interfacial area contained with the REV volume, and aβσ is

equal to the β − σ interfacial area per unit volume.

(II) 〈cβ〉βσ =
1

Aβσ

∫
Aβσ

cβ dA (3.17)

where 〈cβ〉βσ is the average concentration on the interfacial area.

Through the use of these two definitions, the term on the right-hand side of Eq. (3.11)

can be expressed as

〈∇ · (Dβ∇cβ)〉 = ∇ · 〈Dβ∇cβ〉 − Keq aβσ
∂〈cβ〉βσ
∂t

. (3.18)

Further employment of the first averaging theorem to the first term of the right-hand side
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leads to

〈∇ · (Dβ∇cβ)〉 = ∇ ·

[
Dβ

(
∇〈cβ〉 +

1

V

∫
Aβσ

cβ nβσ dA

)]
− Keq aβσ

∂〈cβ〉βσ
∂t

. (3.19)

Finally, on using equations (3.13), (3.14) and (3.19) in Eq. (3.12), we get an intermediate

form of the volume-averaged solute transport equation:

∂〈cβ〉
∂t

+∇·〈cβvβ〉 = ∇·

[
Dβ

(
∇〈cβ〉 +

1

V

∫
Aβσ

cβ nβσ dA

)]
−Keq aβσ

∂〈cβ〉βσ
∂t

. (3.20)

We will now transform this equation in terms of the intrinsic phase-average using the

relation

〈cβ〉 = εβ 〈cβ〉β (3.21)

which is based on Eq. (3.4). This results in

εβ
∂〈cβ〉β

∂t
+ ∇ · 〈cβvβ〉 = ∇ ·

[
Dβ

(
εβ∇〈cβ〉β + 〈cβ〉β∇εβ +

1

V

∫
Aβσ

cβ nβσ dA

)]

− Keq aβσ
∂〈cβ〉βσ
∂t

. (3.22)

Our aim is to develop an equation in terms of the macroscopic variable 〈cβ〉β entirely.

However, we have some unknown terms in the equation which are preventing us from

reaching this goal. These terms are the dispersion term 〈cβvβ〉, the surface integral term

on the right-hand side, as well as the transient term involving 〈cβ〉βσ. Hence some more

work lies ahead of us.

In order to proceed further, we will take the help of the following well-known decompo-

sitions

cβ = 〈cβ〉β + c̃β and vβ = 〈vβ〉β + ṽβ (3.23)

where 〈cβ〉β is the intrinsic phase-average concentration in the β phase and c̃β is the spatial
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deviation in concentration of the β phase. Similarly, 〈vβ〉β is the intrinsic phase-average

velocity in the β phase and ṽβ is the spatial deviation in velocity of the β phase.

This is essentially a splitting of length scales with 〈cβ〉β varying over a much larger

length-scale, say l〈cβ〉β while c̃β varying over the characteristic length lc̃β . Here the

constraint associated with this splitting [82] is

lc̃β << ro << l〈cβ〉β (3.24)

with ro being the size of the REV. This constraint allows one to treat the average 〈cβ〉β as

a constant in the volume and area integrals within the REV. A similar set of constraints

and conclusions can be associated with the decomposition associated with velocity given

in Eq. (3.23). Using the property of these averages to be constant within the REV, it is

easy to prove the following corollary associated with the decomposition, i.e.,

〈c̃β〉 = 0 and 〈ṽβ〉 = 0 . (3.25)

Through the use of Eqs. (3.23) and (3.25), the dispersion term of Eq. (3.22) can be

transformed as

〈cβvβ〉 = 〈〈cβ〉β〈vβ〉β〉 + 〈〈cβ〉βṽβ〉 + 〈c̃β〈vβ〉β〉 + 〈c̃βṽβ〉

= 〈cβ〉β〈vβ〉βεβ + 0 + 0 + 〈c̃βṽβ〉

= εβ〈cβ〉β〈vβ〉β + εβ〈c̃βṽβ〉β . (3.26)

In these derivations, we have also used the relation between the phase-average and the

intrinsic phase-average as given by Eq. (3.21), as well as the fact that 〈1〉 = εβ which

follows from the basic definitions given earlier in Eqs. (3.2) and (3.5). Using the continuity

equation given in Eq. (3.11), the divergence of the dispersion term can be expressed as
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∇ · 〈cβvβ〉 = εβ〈vβ〉β · ∇〈cβ〉β + ∇ ·
(
εβ〈c̃βṽβ〉β

)
. (3.27)

Let us now consider the surface integral term on the right-hand side of Eq. (3.22). If

we use the result (∇εβ) = − 1
V

∫
Aβσ

nβσ c̃β dA, which is obtained after substituting φβ = 1

in the first averaging theorem (Eq. (3.6)), in conjunction with the decomposition given

in Eq. (3.23), we get the following result:

1

V

∫
Aβσ

nβσ cβ dA =

(
1

V

∫
Aβσ

nβσ dA

)
〈cβ〉β +

1

V

∫
Aβσ

nβσ c̃β dA

= − (∇εβ) 〈cβ〉β +
1

V

∫
Aβσ

nβσ c̃β dA . (3.28)

Let us now try to exploit the developments in these last two equations in order to get

closer to our goal of developing a macroscopic governing equation only in terms of the

macroscopic average terms. On using the results of Eqs. (3.27) and (3.28) in Eq. (3.22),

we get

εβ
∂〈cβ〉β

∂t
+ εβ〈vβ〉β · ∇〈cβ〉β + ∇ ·

(
εβ〈c̃βṽβ〉β

)
= ∇ ·

[
Dβ

(
εβ∇〈cβ〉β +

1

V

∫
Aβσ

nβσ c̃β dA

)]
− Keq aβσ

∂〈cβ〉βσ
∂t

. (3.29)

In this equation, we can notice the mathematical representations of the different

transport mechanisms involved. On the left-hand side of Eq. (3.29), the first term

accounts for accumulation of the tracer species, the second term corresponds to the

convective flux, and the third term captures the hydrodynamic dispersion phenomenon,

which, as widely accepted [1], is the result of spatial deviations in the pore-level velocity

field. Similarly, on the right-hand side of the equation, the first term represents the

diffusive flux originating due to spatial gradient of the average concentration, and the

macrodiffusive or non-local diffusive flux based on perturbations in the concentration

field, whereas the last term accounts for the adsorptive flux onto the β − σ interfacial
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surface. It should be noted that porous media have significantly high specific interfacial

area (i.e, large Aβσ within the REV) which makes them highly effective for adsorption-

based applications, and in this case, may also make the adsorptive-flux term significant

even in the cases with small rates of change of average concentration.

Let us now work on the transient term on the left-hand side of Eq. (3.29). In view of

the constraints expressed by Eq. (3.24), and according to [122] , it is acceptable to use

the following approximations:

〈〈cβ〉β〉βσ = 〈cβ〉β and 〈c̃β〉βσ = 0 . (3.30)

The use of Eq. (3.23) in the transient term along with these approximations allows one

to rewrite Eq. (3.29) in a simplified form:

εβ

(
1 +

Keqaβσ
εβ

)
∂〈cβ〉β

∂t
+ εβ〈vβ〉β · ∇〈cβ〉β

= ∇ ·

[
εβDβ

(
∇〈cβ〉β +

1

Vβ

∫
Aβσ

nβσ c̃β dA

)]

− ∇ ·
(
εβ〈c̃βṽβ〉β

)
. (3.31)

3.2.3 Seeking Closure

In order to estimate the unknown terms in Eq. (3.31) involving c̃β, we plan to propose

a set of equations for the same. Later, those equations will be transformed in order to

obtain what is called the closure formulation.

We start with Eq. (3.9), where, after using the decomposition given in Eq. (3.23), we

obtain:

∂〈cβ〉β

∂t
+
∂c̃β
∂t

+ ∇ · (〈cβ〉β〈vβ〉β) + ∇ · (〈cβ〉βṽβ) + ∇ · (c̃β〈vβ〉β) + ∇ · (c̃βṽβ)

= ∇ · (Dβ∇〈cβ〉β) + ∇ · (Dβ∇c̃β) . (3.32)
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On dividing Eq. (3.31) with εβ and rearranging the terms, we get

(
1 +

Keqaβσ
εβ

)
∂〈cβ〉β

∂t
+ 〈vβ〉β · ∇〈cβ〉β + ε−1β ∇ · 〈c̃βṽβ〉

= ε−1β ∇ · (εβ Dβ∇〈cβ〉
β) + ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
.

(3.33)

Let us look at the term ε−1β ∇·(εβ Dβ∇〈cβ〉β) of this equation. It is clear that this term

reduces to ∇ · (Dβ∇〈cβ〉β) of Eq. (3.32) if the porous medium is assumed to be perfectly

homogeneous and hence the porosity εβ is constant everywhere. However, real porous

media always have some little inhomogeneity associated with them. Hence, it is advisable

if one develops some constraint for the applicability of this assumption of homogeneity.

The expansion of the concerned term yields

ε−1β ∇ · (εβ Dβ∇〈cβ〉
β) = ∇ · (Dβ∇〈cβ〉β) + ε−1β ∇εβ · Dβ∇〈cβ〉

β . (3.34)

Our aim will be to show that the second term on the right-hand side is much smaller

than the first one. After a little scaling analysis, it is easy to show that

O
(
ε−1β ∇εβ · Dβ∇〈cβ〉β

)
O (∇ · (Dβ∇〈cβ〉β))

= O

(
l〈cβ〉β

lεβ

)
. (3.35)

Hence, if

l〈cβ〉β << lεβ , (3.36)

then ε−1β ∇εβ ·Dβ∇〈cβ〉β << ∇·(Dβ∇〈cβ〉β). Eq. (3.36) implies that the length-scale

over which the porosity εβ is changing is much larger than the length-scale over which the

intrinsic phase-average concentration 〈cβ〉β is changing. In such a situation, the porous

medium can be said to be homogeneous in terms of the porosity, and hence Eq. (3.33)
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reduces to

(
1 +

Keqaβσ
εβ

)
∂〈cβ〉β

∂t
+ 〈vβ〉β · ∇〈cβ〉β + ε−1β ∇ · 〈c̃βṽβ〉

= ∇ · (Dβ∇〈cβ〉β) + ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
.

(3.37)

We will now subtract Eq. (3.37) from Eq. (3.32) to get an equation of the form:

∂c̃β
∂t
− Keqaβσ

εβ

∂〈cβ〉β

∂t
+ ∇ · (〈cβ〉β〈vβ〉β) − 〈vβ〉β · ∇〈cβ〉β + ∇ · (〈cβ〉βṽβ)

+ ∇ · (c̃β〈vβ〉β) + ∇ · (c̃βṽβ)− ε−1β ∇ · 〈c̃βṽβ〉

= ∇ · (Dβ∇c̃β)− ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
. (3.38)

Let us take the help of the point-wise continuity equation given in Eq. (3.11) to simplify

this equation further. On applying the first averaging theorem to this continuity equation

and applying the no-slip boundary condition on the fluid-solid interface, one obtains the

macroscopic equation of continuity:

∇ · 〈vβ〉 = 0 . (3.39)

Noting the fact that 〈vβ〉 = εβ 〈vβ〉β, one can manipulate the macroscopic continuity

equation to obtain

∇ · 〈vβ〉β = − 1

εβ
〈vβ〉β · ∇εβ ≈ 0 . (3.40)

Using a simple scaling analysis, one can convince oneself that the right-hand side of this

equation will indeed tend to zero if the constraint
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l〈vβ〉β << lεβ (3.41)

is valid. Note the similarity of this relation with the one given in Eq. (3.36), thus

emphasizing the fact that the length-scale of variation of macroscopic quantities should

be much smaller than the length-scale of variation of porosity. We can apply Eq. (3.40)

to obtain the following result:

∇ · (〈cβ〉β〈vβ〉β) = 〈vβ〉β · ∇〈cβ〉β + 〈cβ〉β∇ · 〈vβ〉β ≈ 〈vβ〉β · ∇〈cβ〉β . (3.42)

Similarly, by using Eq. (3.40), one obtains the following simplification:

∇ · (c̃β〈vβ〉β) ≈ 〈vβ〉β · ∇c̃β . (3.43)

Through the use of Eqs. (3.42) and (3.43), Eq. (3.38) can be rewritten as

∂c̃β
∂t

+∇ · (c̃βṽβ) − ε−1β ∇ · 〈c̃βṽβ〉 + ∇ · (ṽβ〈cβ〉
β) + 〈vβ〉β · ∇c̃β

= ∇ · (Dβ∇c̃β) − ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
+
Keqaβσ
εβ

∂〈cβ〉β

∂t
. (3.44)

From Eqs. (3.11) and (3.40), while using the decomposition given in Eq. (3.23), one can

easily show that

∇ · ṽβ = 0 . (3.45)

Expanding some terms and cancelling some others on the left-hand side, while using

Eq. (3.45) at one place, Eq. (3.44) can be transformed to this final form as a governing
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differential equation for c̃β:

∂c̃β
∂t

+ vβ · ∇c̃β + ṽβ · ∇〈cβ〉β − ε−1β ∇ · 〈ṽβ c̃β〉

= ∇ · (Dβ∇c̃β) − ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
+
Keq aβσ
εβ

∂〈cβ〉β

∂t
. (3.46)

Here there are two terms, one ṽβ ·∇〈cβ〉β and the other Keq aβσ
εβ

∂〈cβ〉β
∂t

, which act as source

terms for the creation of non-zero c̃β in the liquid (β) phase within the REV. Using the

decomposition given in Eq. (3.23) in Eq. (3.10), one can generate the following boundary

condition

B.C.1 : −nβσ ·Dβ∇c̃β −Keq
∂c̃β
∂t

= −nβσ ·Dβ∇〈cβ〉β −Keq
∂〈cβ〉β

∂t
, at Aβσ (3.47)

where the two terms on the right-hand side are the source terms.

We will now present a simplification of Eq. (3.46) based on an order-of-magnitude

analysis. We will compare pairs of terms in order to discard the insignificant terms.

Note that

O (vβ · ∇c̃β)
O
(
ε−1β ∇ · 〈ṽβ c̃β〉

) = O

(
L

lc̃β

)

and since L >> lc̃β

=⇒ vβ · ∇c̃β (Convective Transport) >> ε−1β ∇ · 〈ṽβ c̃β〉 (Dispersive Transport)

(3.48)

Similarly

O (∇ · (Dβ∇c̃β))

O
(
ε−1β ∇ ·

[
Dβ
(

1
V

∫
Aβσ

nβσ c̃β dA
)]) = O

(
L

lc̃β

)
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and since L >> lc̃β

=⇒ ∇ · (Dβ∇c̃β) (Local Diffusive Transport)

>> ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
(Non-Local Diffusive Transport)(3.49)

Using Eqs. (3.48) and (3.49) to discard the insignificant terms in Eq. (3.46), the governing

differential equation reduces to

∂c̃β
∂t

+ vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2c̃β +
Keq aβσ
εβ

∂〈cβ〉β

∂t
(3.50)

after ignoring the variation in Dβ within the REV. Here, ṽβ · ∇〈cβ〉β will be termed as

the convective source while Keq aβσ
εβ

∂〈cβ〉β
∂t

is designated as the adsorptive source.

While the volume-averaged species transport problem described by Eq. (3.31) has to

be transient in order to handle realistic ion-transport problems through porous media, the

fate of the transient term in the governing equation at the closure level, Eq. (3.50), has

to be decided. We will decide this by comparing the order-of-magnitudes of the transient

and the diffusive-transport terms as follows.

O
(
∂c̃β
∂t

)
O (Dβ∇2c̃β)

=
1
Dβ τ
lc̃β

2

(3.51)

where τ is the characteristic time for changes in c̃β. If

Dβ τ
lc̃β

2 >> 1 , (3.52)

then Dβ∇2c̃β >>
∂c̃β
∂t

, and hence the transient term can be dropped.

Let us examine what it means in real practical terms. A typical value of Dβ is 10−9

m2/s in water-based systems while lc̃β ∼ 10µm = 10−5m as it matches the width of the

channel between particles in a typical (particulate) porous medium. In such a situation,
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the condition given in Eq. (3.52) enforces that τ >> 0.1 s. Since this condition is easily

satisfied in real systems, we can be sure that the governing equations at the closure level

will almost always be quasi-steady. Hence, the final form of the governing differential

equation for c̃β is

vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2c̃β +
Keq aβσ
εβ

∂〈cβ〉β

∂t
. (3.53)

Since the governing differential equations have been rendered quasi-steady, it is reasonable

to expect the same for the associated boundary conditions given in Eq. (3.47). Let

us compare the strong diffusive-transport term with the transient term and find the

associated constraint through the following order-of-magnitude analysis:

nβσ · Dβ∇c̃β >> Keq
∂c̃β
∂t

⇒ Dβ τ
Keq lc̃β

>> 1 . (3.54)

Since this constraint is very likely to be enforced because of Eq. (3.52), Eq. (3.47) reduces

to the final form of the closure-level boundary condition:

B.C.1 : − nβσ · Dβ∇c̃β = −nβσ · Dβ∇〈cβ〉β − Keq
∂〈cβ〉β

∂t
, at Aβσ . (3.55)

Note that aside from this boundary condition, one also needs a global average constraint

defined as

〈c̃β〉β = 0 (3.56)

which arises from Eq. (3.25). Thus we collect Eqs. (3.53) and (3.55), and include the

standard periodicity condition in order to propose the final set of equations needed to

solve for the distribution of c̃β in the pore region of the REV, which is now in the form

of a unit-cell.
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Local Closure Problem:

vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2c̃β +
Keq aβσ
εβ

∂〈cβ〉β

∂t
(3.57)

B.C.1 : − nβσ · Dβ∇c̃β = −nβσ · Dβ∇〈cβ〉β − Keq
∂〈cβ〉β

∂t
, at Aβσ(3.58)

Periodicity B.C. : c̃β(r+ li) = c̃β(r), i = 1, 2, 3 (3.59)

Constraint : 〈c̃β〉β = 0 . (3.60)

Note that we have invoked the periodicity boundary condition here that is in line with

the closure formulations proposed for other mass and momentum tranfer problems [82,

122]. When this boundary condition is applied on the boundaries of a unit-cell, it imposes

the assumption that the porous medium is periodic in nature and can be recreated by

the translation of the unit cell along the x-, y- and z-directions. However, as has been

pointed by Whitaker [82], the influence of such a boundary condition is confined to a

narrow region close to the boundary, and the accuracy of the predicted deviation field is

not significantly affected.

Solving the Closure Problem using Closure Variables

We will now aim to solve for the deviation in solute concentration, c̃β, in terms of variables

that link this deviation with its sources. Note that there are two sources present in our

problem: one as ∇〈cβ〉β and the other as Keq
∂〈cβ〉β
∂t

. These derivatives of the macroscopic

solute concentration give rise to the local deviations within in the REV. Hence, it is quite

logical that we propose a representation for c̃β in terms of these sources:

c̃β = bβ · ∇〈cβ〉β + sβKeq
∂〈cβ〉β

∂t
(3.61)

where bβ and sβ are called the closure variables that are functions of position, and hence

can be thought of ‘distributing’ the contributions of the two sources within the β region

of the unit-cell. The bβ maps ∇〈cβ〉β onto c̃β, while the sβ maps Keq
∂〈cβ〉β
∂t

onto c̃β.
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We now use Eq. (3.61) with Eq. (3.57) and treat ∇〈cβ〉β and ∂〈cβ〉β
∂t

as constants while

doing the spacial derivatives. On collecting the coefficients of these terms, we get

[
vβ · ∇bβ + ṽβ − Dβ∇2bβ

]
·∇〈cβ〉β +

[
vβ · ∇sβ − Dβ∇2 sβ −

aβσ
εβ

]
Keq

∂〈cβ〉β

∂t
= 0 .

(3.62)

Since the terms ∇〈cβ〉β and Keq
∂〈cβ〉β
∂t

are independent of each other, their coefficients

have to be individually set to zero in order to satisfy Eq. (3.62). Hence, we get the

governing differential equations for two different problems:

Problem I for bβ : vβ · ∇bβ + ṽβ = Dβ∇2bβ (3.63)

Problem II for sβ : vβ · ∇sβ = Dβ∇2 sβ +
aβσ
εβ

. (3.64)

Using this same approach, one can split the B.C.1 (Eq. (3.58)), the periodicity B.C.

(Eq. (3.59)), and the global constraint (Eq. (3.60)) into two parts each–one for bβ and

the other for sβ. Hence, we can generate two sets of governing equations and boundary

conditions for solving the closure problem.

Problem I:

vβ · ∇bβ + ṽβ = Dβ∇2bβ (3.65)

B.C.1 : − nβσ · ∇bβ = nβσ, at Aβσ (3.66)

Periodicity B.C.: bβ(r+ li) = bβ(r), i = 1, 2, 3 (3.67)

Constraint : 〈bβ〉β = 0 (3.68)
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Problem II:

vβ · ∇sβ = Dβ∇2sβ +
aβσ
εβ

(3.69)

B.C.1 : − nβσ · Dβ∇sβ = 1, at Aβσ (3.70)

Periodicity B.C.: sβ(r+ li) = sβ(r), i = 1, 2, 3 (3.71)

Constraint : 〈sβ〉β = 0 . (3.72)

Note that in order to solve the above sets of equations, we need the distribution

of vβ within the unit-cell, which will require solving the Stokes-Flow equations in the

pore-region corresponding to the β phase.

3.2.4 Developing a Conventional Form for the Macroscopic Solute Transport

Equation

Now that the closure formulation can be solved in principle using any multiphysics

software, we can take back the results obtained using Eq. (3.61) to Eq. (3.31) in order

to solve for the distribution of 〈cβ〉β in the macroscopic domain. However, since the

governing equation for such a distribution is of the form of a convection-dispersion

equation, we will first attempt to transform Eq. (3.31) into such a form.

By employing Eq. (3.61) in the first term on the right-hand side of Eq. (3.31), we get,
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after some manipulation, the following result:

∇ ·

[
εβDβ

(
∇〈cβ〉β +

1

Vβ

∫
Aβσ

nβσ c̃β dA

)]

= ∇ ·

[
εβDβ

(
I +

1

Vβ

∫
Aβσ

nβσ bβ dA

)
· ∇〈cβ〉β

]

+ ∇ ·

[
Dβ
V

(∫
Aβσ

nβσ sβ dA

)]
Keq

∂〈cβ〉β

∂t

+
Dβ
V

(∫
Aβσ

nβσ sβ dA

)
· ∇
[
Keq

∂〈cβ〉β

∂t

]
. (3.73)

Similarly, we can transform the second term on the right-hand side of Eq. (3.31) as

− ∇ ·
(
εβ〈c̃βṽβ〉β

)
= ∇ ·

[
(−εβ〈ṽβbβ〉) · ∇〈cβ〉β

]
+ [∇ · (−εβ〈sβṽβ〉)]Keq

∂〈cβ〉β

∂t
− εβ〈sβṽβ〉 · ∇

[
Keq

∂〈cβ〉β

∂t

]
. (3.74)

On using Eqs. (3.73) and (3.74) on the right-hand side of Eq. (3.31) and on manipulating

the terms, one can get this penultimate form:

εβ
∂〈cβ〉β

∂t
+ εβ〈vβ〉β · ∇〈cβ〉β + εβuβ · ∇

(
Keq

∂〈cβ〉β

∂t

)
= ∇ ·

(
εβD

∗
β · ∇〈cβ〉β

)
− aβσKeq

∂〈cβ〉β

∂t
. (3.75)

The new terms used in this equation are as follows:

uβ = 〈sβṽβ〉β −
Dβ
Vβ

∫
Aβσ

nβσ sβ dA (3.76)

D∗β = Dβ

[
I +

1

Vβ

∫
Aβσ

nβσ bβ dA

]
− 〈ṽβbβ〉β . (3.77)

Note that 〈ṽβbβ〉β term essentially comes to existence because of the spacial fluctuations
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in the velocity and the 〈cβ〉β induced concentration fields, and hence it is often called

the hydrodynamic dispersion tensor, Dβ (page 139 of [82]). Similarly the first part

of the right-hand side of Eq. (3.77), borrowing on the traditional terminology, can be

christened as the effective diffusivity tensor, Deff . As a result, the equation can be

represented as

D∗β = Deff + Dβ (3.78)

where

Deff = Dβ

[
I +

1

Vβ

∫
Aβσ

nβσ bβ dA

]
(3.79)

and

Dβ = −〈ṽβbβ〉β . (3.80)

The term 〈sβṽβ〉β of Eq. (3.76) is similar to the hydrodynamic dispersion tensor

and becomes ‘alive’ because of the spacial fluctuations in the velocity and the Keq
∂〈cβ〉β
∂t

induced concentration fields. Hence, we can call it the adsorption-induced hydrodynamic

dispersion vector. Also, the second term on the right-hand side of Eq. (3.76) is similar to

the diffusivity tensor, and therefore can be called the adsorption-induced diffusivity

vector.

If we assume that (a) the porosity, εβ, is almost a constant following the constraint

given in Eq. (3.36), (b) the total dispersion tensor, D∗β, is unchanging, (c) the equilibrium

coefficient, Keq, is a constant, then Eq. (3.75) can be presented in a much simpler form:

(
1 +

aβσKeq
εβ

)
∂〈cβ〉β
∂t

+ 〈vβ〉β · ∇〈cβ〉β + Keq uβ · ∇
(
∂〈cβ〉β
∂t

)
= D∗β : ∇∇〈cβ〉β .

(3.81)

A study of this equation reveals that the third term in the left-hand side (to be called

the mixed derivative term) is preventing us from attaining the form of the traditional

convection-dispersion equation. Here we develop a constraint that will allow us to neglect
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this mixed derivative term. For this to happen, it is obvious that the following restriction

is observed:

Keq uβ · ∇
(
∂〈cβ〉β

∂t

)
<<

(
1 +

aβσKeq

εβ

)
∂〈cβ〉β

∂t
. (3.82)

Use of the estimate given by

∇
(
∂〈cβ〉β

∂t

)
∼ 1

l ∂〈cβ〉β
∂t

∂〈cβ〉β

∂t
(3.83)

leads to
Keq uβ
l ∂〈cβ〉β

∂t

<<

(
1 +

aβσKeq

εβ

)
(3.84)

where l ∂〈cβ〉β
∂t

is the length-scale associated with the spatial variation of ∂〈cβ〉β
∂t

. At this

point, we need an estimate of uβ, and one possibility is given by Eq. (3.76):

uβ ∼ 〈sβṽβ〉β =⇒ uβ ∼ sβvβ . (3.85)

It would appear that the dominant source for sβ is given by Eq. (3.69). This assumption

leads to

sβ ∼
lsβ
Dβ

(3.86)

which, in turn, leads to

uβ ∼ sβ vβ =⇒ uβ ∼
vβ lsβ
Dβ

. (3.87)

Use of this result in Eq. (3.84) provides the restriction

Keq vβ
Dβ

lsβ
l ∂〈cβ〉β

∂t

<<

(
1 +

aβσKeq

εβ

)
. (3.88)
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In case this restriction is satisfied, the mixed derivative term in Eq. (3.81) can be

discarded (as it is done for several applications), and the macroscopic species-transport

equation acquires the form of the classical convection-dispersion equation:

(
1 +

aβσKeq
εβ

)
∂〈cβ〉β
∂t

+ 〈vβ〉β · ∇〈cβ〉β = D∗β : ∇∇〈cβ〉β . (3.89)

3.3 Summary

We finally have the macroscopic equation for predicting arsenic concentrations in homoge-

neous, single-scale porous media. Using the rigorous volume averaging method, we

have managed to derive for this purpose two versions of the final convection-dispersion

equation, Eqs. (3.81) and (3.89). The important point is that the important macroscopic

coefficients, the total dispersion tensor, D∗β, and the adsorption-induced vector, uβ, can

now be estimated using the closure formulation as described by the problems I and II

listed through Eqs. (3.65) to (3.72). Since this closure formulation is to be solved in a

unit-cell which is created from the microstructure of a porous medium, a mechanism is

now in place for ensuring a proper micro-macro coupling.

It would be interesting to study differences in the predictions by the two macroscopic

equations, Eqs. (3.81) and (3.89). Note that the former equation employs the two

macroscopic coefficients, D∗β and uβ, and hence, one will need to solve both the closure

problems, i.e., the problems I and II as listed by Eqs. (3.65) to (3.72). The former equation

studies the effect of both passive solute transport and surface adsorption. However,

the latter equation employs only D∗β as the macroscopic coefficient, which accounts for

the effect of passive solute transport, and hence, only closure problem I, as listed by

Eqs. (3.65) to (3.68), needs to be solved in this case. The sequel of the current work, part

II of this two-part chapter series, would numerically investigate both the macroscopic

equations, Eqs. (3.81) and (3.89), and include validation studies on the effective transfer

coefficients.
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The arsenic filtration research recognizes that a critical design parameter of any filter

is the ‘hydraulic detention time’ of the polluted water in the filter [14]. This means that

the ratio of the adsorption rate to the macroscopic ‘flow-through’ rate, as captured by

Damköhler number, is important. One can vary the macroscopic mass-transport rate

by changing the pressure differential imposed over the filter, thereby altering the Darcy

velocity and hence, changing the Damköhler number. This is also likely to impact Péclet

number, which is the ratio of the advection and diffusion mass transports [131]. As

suggested by previous studies [127, 132, 133], the effect of these two numbers on the

crucial macroscopic coefficients, D∗β and uβ, needs to be studied.

Once we have determined the most effective macroscopic equation, whether Eq. (3.81)

or Eq. (3.89), we will aim to use that equation to predict the distribution of the intrinsic

phase-averaged concentration of arsenic, 〈cβ〉β, within the porous regions of a commercial

or lab-developed arsenic filter. Later we plan to predict the life of iron-based arsenic filters

by comparing the predictions of the breakthrough times in long-term studies with the

experimental data [13, 14]. Here, probably for the first time, the microstructure of the

porous filters and the adsorption reactions going on at the microscopic scale will have a

say in the macroscopic processes through the micro-macro coupling as captured by the

closure formulation proposed in this chapter. We plan to use our experience in solving

similar problems in the past [17,134,135].
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CHAPTER 4

Modeling Transport and Adsorption of Tracer Species.

Part II: Numerical Validation

4.1 Literature Review

Arsenic (As) contamination poses a global threat because of its toxicity and carcinogenicity

[136, 137]. It is a naturally occurring ubiquitous toxic metalloid which predominantly

exists in two inorganic forms: pentavalent arsenate (As(V)) and trivalent arsenite (As(III))

[13, 138]. Different types of cancers and skin lesions may develop with chronic intake of

arsenic-contaminated drinking waters, which are collectively referred to as arsenicosis [139–

141]. Due to the widespread nature and seriousness of arsenic concentration-related health

issues, several regulatory agencies, including the World Health Organization (WHO) and

United States Environmental Protection Agency (US EPA), have revised the permissible

contaminant limit to 10 µg/L for safe drinking water [142, 143]. High levels of arsenic

concentration, as high as 3700 µg/L, have been recorded worldwide, especially in the

countries of India, Bangladesh, and China [144–146]. Thus, a host of innovative arsenic

removal technologies continue to be developed as this serious problem continues to draw

the attention of researchers across the globe [13,14,137,141,144,147–150].

Among various water treatment technologies available, the adsorption-based arsenic

filtration technique involving porous media is most widely employed because it is cost-

effective, highly efficient, and easy to operate [23,24]. For this reason, the need to develop

accurate mathematical models for providing deep insight into the adsorption process,

which involves capturing of dissolved metal ions like As(III) and As(V) onto the active

surface of the solid particles, is a research priority.
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Contaminant transport in porous media is a well-researched problem across many

scientific and engineering disciplines, including soil sciences, groundwater hydrology,

chemical engineering, and environmental engineering. In general, this multiscale transport

phenomenon can be studied by the use of either the pore-scale or the Darcy-scale models.

Although significant strides have been made both in pore-scale modeling and computatio-

nal capabilities [25, 26], the complex pore microstructures still pose a computational

challenge in applying the pore-scale simulations in a real-world porous medium [27].

On the other hand, researchers have examined this mass transfer problem using the

Darcy’s law and presented several convection-diffusion equation-based transportation

models. Numerous analytical solutions for such solute transport models are available

[94–96, 99, 104, 151]; however, they have certain limitations associated with them. Pillai

and Raizada [138] described these shortcomings which included, but not limited to,

oversimplification of the dispersion tensor, treating the dispersion tensor as a constant,

and adopting a constitutive relation for the tensor without accounting for the pore-scale

effects.

Another route to investigating this problem is to use the upscaling approach, which

leads to the development of macroscale models while considering a porous medium as

an averaged continuum system. This approach has gained considerable attention from

reseachers on account of its ability to correlate the pore-scale physics to the macroscopic

transport equations in terms of effective medium coefficients. The upscaled models can be

derived through techniques of volume averaging [82,152,153], homogenization via multiple

scale expansions [154–156], pore-network models [157,158], and other approaches reviewed

in ref. [5].

In this chapter, we use the method of volume averaging to upscale the governing

equations applicable at microscale to develop a macroscale model. This macroscale

model invokes a micro-macro coupling between different length scales and reflects the

macroscopic behaviour of the system, while addressing the aforementioned drawbacks
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pertaining to the widely-used analytical solutions. The volume-averaged model involves

effective transport coefficients, such as the effective diffusivity and dispersion coefficients,

which can be estimated by solving the related closure problems in a representative

elementary volume (REV) of porous media. For example, Wood et al. [124] predicted the

effective reaction rate for a reactive chemical species using the volume-averaged model

and made comparisons with similar results obtained from exercising direct numerical

simulations at microscale. Valdés-Parada et al. [125, 159] presented a comprehensive

numerical investigation on the upscaling of mass transport and reaction processes in

porous media, where the effective diffusion tensor was found to be influenced by the

reaction rate, pore microstructure, and flow rate. Quintard et al. [118] formulated the

volume-averaged transport equations for solute adsorption in a chemically and mechanic-

ally heterogeneous porous medium when the condition of large-scale mechanical equilibr-

ium is in effect. Later, Ahmadi et al. [119] formulated a two-equation model for solute

transport with adsorption in dual-length scale heterogeneous porous media. In this case,

the results obtained from numerical simulations carried out on an aquifer system were

observed to be in good agreement with the proposed model.

In the same vein, Whitaker [123] demonstrated the process of executing the volume

averaging method on the subject of solute transport with non-linear adsorption in porous

media. Similarly, Plumb and Whitaker [122] used small-scale averaging to spatially

smooth the microscale governing equations for describing the process of adsorption of

chemical species in a heterogeneous porous medium based on linear adsorption isotherm.

Their results suggested that reasonably good theoretical estimates for dispersion can be

obtained if the convective transport regime under study continues to satisfy the steady

state form of the closure problem. Recently, Zhang et al. [160] used the upscaling approach

to model the adsorption-diffusion process in nanoporous materials.

In summation, the majority of the above-referenced works present different types of

adsorption models, while considering linear and non-linear adsorption cases, and examine
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the influence of chemical reaction over effective transfer coefficients in the upscaled

models. However, to the best of our knowledge, a comprehensive examination of results

obtained from an adsorption-based volume-averaged model and its validation with direct

numerical simulations at the pore-scale has not been documented so far. Also, a crucial

characteristic of an adsorbent is the inherent fluid-solid interfacial area which directly

influences the adsorption capacity of the porous medium. It is important to assess the

effect of variation in fluid-solid interfacial area on the effective parameters. Thus, the aim

of this chapter is to corroborate the previous theoretical work by Pillai and Raizada [138]

and address these issues on the basis of a numerical investigation.

The chapter is organized as follows. In Sections 4.2.1 and 4.2.2, we revisit the

theoretical developments proposed by us (ref. [138]) on pore-scale modeling and the

volume averaging method. In Section 4.2.3, we present the nondimensionalized forms

of the closure problems, effective transfer coefficients, and both the volume-averaged and

pore-scale models. In Section 4.3, we discuss the results which include validation of

the effective transfer coefficients, affect of change in pore microstructure on the effective

coefficients, and examine the performance of the volume-averaged models with respect to

the pore-scale model. Finally, in Section 4.4, we offer concluding remarks.

4.2 Model for solute transport

4.2.1 Pore scale problem

In this study, we consider a single-phase flow occurring through a rigid and homogeneous

porous medium, as presented in Fig. 4.1. The stationary and rigid solid particles constitute

the σ-phase and the incompressible fluid saturating the pores represents the β-phase. We

plan to investigate the mass transport of a dilute chemical species X caused due to

convection and diffusion processes, with adsorption in effect at the fluid-solid interface.

The pore-level convection-diffusion momentum balance equations, and the related bound-
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ary conditions for solute transport and fluid flow at the microscale, are as follows:

∂cβ
∂t

+ ∇ · (cβvβ) = ∇ · (Dβ∇cβ) (4.1)

B.C.1 : − nβσ · Dβ∇cβ = Keq
∂cβ
∂t

, at Aβσ (4.2)

0 = −∇P + µ∇2vβ (4.3)

∇ · vβ = 0 (4.4)

B.C.2 : vβ = 0, at Aβσ (4.5)

where in Eqs. (4.1) and (4.2), cβ is the point concentration of species X in the β-phase, vβ

is the velocity of the β-phase, Dβ is the molecular diffusivity of the β-phase, andKeq is the

equilibrium or distribution coefficient for the linear isotherm. The velocity field, vβ, used

in Eq. (4.1) is determined by the Stokes flow equation given in Eq. (4.3). In Eq. (4.3), P

is the hydrodynamic fluid pressure in the β-phase and µ is the dynamic viscosity of fluid.

The continuity equation for the β-phase and the no-slip boundary condition applicable

at the β − σ interface (Aβσ) are given in Eqs. (4.4) and (4.5), respectively. The tracer

equation (Eq. (4.1)) is based on the contraints of constant total molar concentration and

dilute solution in a binary system (see ref. [130] for more details).

4.2.2 Upscaling by the Volume Averaging Method

In this section, we will first present a condensed version of discussion on the upscaling

procedures and the closure problem formulation. The complete details of the derivations

are given in part I [138] of this two-part chapter series. Later, we will extend the previous

developments and formulate the nondimensionalized forms of the pore-scale and volume-

averaged models, and the associated closure formulation.
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Figure 4.1: Sketch of a macroscopic region of length L and a spherical representative elementary
volume (REV) of volume V with radius r0. The REV is composed of solid (σ) and fluid (β)
phases.

4.2.2.1 Upscaling procedures

In this section we will employ the method of volume averaging to upscale the aforementio-

ned problem from the pore scale to the macroscopic one. Therefore, our objective would

be to arrive at the macroscopic governing equations and boundary conditions for mass

and momentum transport.

Here, the representative elementary volume (REV) for the porous medium domain,

as shown in Fig. 4.1, is assumed to be in its traditional spherical form with characteristic

size, ro, and has been demonstrated to satisfy the following length-scale hierarchy [161]

lσ , lβ << ro << L (4.6)

where the characteristic length scales, lσ and lβ , are associated with the average particle

size (solid phase) and pore diameter (fluid phase), respectively, and L corresponds to

the characteristic length associated with the macroscale. This constraint (Eq. (4.6)) is

considered to be crucial for the existence of the macroscale model [162]. Intuitively, one

can think of this constraint as the tool for sieving out the unnecessary fluctuation details

occurring at the small length-scale while still retaining the essential information related

to the geometrical characteristics of the porous medium for use at the REV scale, ro [163].
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Next, we make use of the phase average (〈φβ〉) and the intrinsic phase average (〈φβ〉β)

operators for evaluating the average value of any variable φβ within the whole of the REV

or only within the β-phase of the REV, respectively. Their mathematical definitions are

as follows

〈φβ〉 =
1

V

∫
Vβ

φβ dV (4.7)

〈φβ〉β =
1

Vβ

∫
Vβ

φβ dV (4.8)

where V is volume of the REV and Vβ is volume of the β-phase in the REV. These two

averaging operators are related as

〈φβ〉 = εβ 〈φβ〉β (4.9)

where εβ is the volume fraction of the β-phase within the REV, and in case of single-phase

flow of the β-phase through the porous medium, it can be referred to as the porosity of

the porous medium.

On applying the averaging operators across Eqs. (4.1) to (4.5), one comes across

few terms in the resultant point differential equations which are evaluated by using the

following spatial and temporal averaging theorems [78,128,164]

〈∇cβ〉 = ∇〈cβ〉 +
1

V

∫
Aβσ

cβ nβσ dA (4.10)

〈∂ cβ
∂t
〉 = ∂〈cβ〉

∂t
− 1

V

∫
Aβσ

cβ w · nβσ dA (4.11)

where nβσ is the unit normal directed outwards from the β-phase towards the σ-phase,

and w is the velocity of the β − σ interface. Applying the necessary upscaling process

(see ref. [138] for the details), we arrive at the following form of the volume-averaged
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solute transport equation in terms of the preferred macroscopic variable, 〈cβ〉β

εβ
∂〈cβ〉β

∂t
+ ∇ · 〈cβvβ〉

= ∇ ·

[
Dβ

(
εβ∇〈cβ〉β + 〈cβ〉β∇εβ +

1

V

∫
Aβσ

cβ nβσ dA

)]
− Keq aβσ

∂〈cβ〉βσ
∂t

(4.12)

where aβσ is the interfacial area per unit volume, i.e., aβσ = Aβσ/V . The term 〈cβ〉βσ
represents the average concentration over the interfacial area and is defined as

〈cβ〉βσ =
1

Aβσ

∫
Aβσ

cβ dA . (4.13)

At this stage, we introduce the following length-scale decompositions proposed by

Gray [116] to eliminate the pore scale variable cβ , simplify the dispersion term 〈cβvβ〉,

and the transient term based on 〈cβ〉βσ in Eq. (4.12):

cβ = 〈cβ〉β + c̃β and vβ = 〈vβ〉β + ṽβ . (4.14)

Here, c̃β and ṽβ represent the spatial deviations in the concentration and velocity variables,

respectively. After substituting these pointwise defined functions (Eq. (4.14)) in Eq. (4.12)

and implementing approximations for 〈cβ〉β and 〈c̃β〉βσ as described in ref. [122], we

eventually attain a simplified form of the volume-averaged solute transport equation [138]:

εβ

(
1 +

Keqaβσ
εβ

)
∂〈cβ〉β

∂t︸ ︷︷ ︸
accumulation and adsorption

+ εβ〈vβ〉β · ∇〈cβ〉β︸ ︷︷ ︸
convection

= ∇ ·

[
εβDβ

(
∇〈cβ〉β +

1

Vβ

∫
Aβσ

nβσ c̃β dA

)]
︸ ︷︷ ︸

diffusion and macrodiffusion

− ∇ ·
(
εβ〈c̃βṽβ〉β

)︸ ︷︷ ︸
hydrodynamic dispersion

. (4.15)

In this equation, one can clearly identify the distinct fluxes arising due to the different
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transport mechanisms involved in the considered solute transport physics. On the left-

hand side of Eq. (4.15), the first term accounts for the accumulation and adsorption of

the chemical species, and the second term represents the convective transport of the fluid

across the porous domain. Similarly, on the right-hand side of this equation, the first

term corresponds to the sum of diffusive and macrodiffusive fluxes based on the changes

in the concentration field, and the second term captures the hydrodynamic dispersion

phenomenon.

4.2.2.2 Closure problem formulation

At this step, Eq. (4.15) is in a form equivalent to that of a convection-diffusion-source

(CDS) equation applicable at the Darcy scale. However, keeping in mind that the

macrodiffusion and hydrodynamic dispersion terms in this equation still depend on c̃β

(sub-pore scale variable), we tacitly manipulate it into a more useful form by developing

a local closure problem based on the method described by Crapiste et al. [165]. To

accomplish this, first, a governing equation for c̃β is developed by using the spatial

decompositions (Eq. (4.14)) in Eq. (4.1), and then the volume-averaged transport equation

(Eq. (4.15)) is subtracted from the resulting pore-scale governing equation. The result is

∂c̃β
∂t

+ vβ · ∇c̃β + ṽβ · ∇〈cβ〉β − ε−1β ∇ · 〈ṽβ c̃β〉

= ∇ · (Dβ∇c̃β)− ε−1β ∇ ·

[
Dβ

(
1

V

∫
Aβσ

nβσ c̃β dA

)]
+
Keq aβσ
εβ

∂〈cβ〉β

∂t
. (4.16)

We identify two terms in Eq. (4.16) which may be construed as the sources for generating

c̃β in the β-phase of the REV. These are designated as the adsorptive source term,
Keq aβσ
εβ

∂〈cβ〉β
∂t

, and the convective source term, ṽβ · ∇〈cβ〉β. Similarly, the boundary

condition gets transformed as follows

B.C.1 : −nβσ ·Dβ∇c̃β −Keq
∂c̃β
∂t

= −nβσ ·Dβ∇〈cβ〉β −Keq
∂〈cβ〉β

∂t
, at Aβσ (4.17)
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where the two terms on the right hand side act as the source terms.

Now, Eqs. (4.16) and (4.17) are further simplified based on order of magnitude

analyses where the accumulation, macrodiffusion and hydrodynamic dispersion terms

are dropped (see ref. [138] for the details), and the governing equations at the closure

level are considered to be always quasi-steady when subjected to the following important

time-scale constraint
Dβ τ
lc̃β

2 >> 1 (4.18)

where τ is the characteristic time to note changes in c̃β within the REV. The final form

of the local closure problem is summarized [138] as

vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2c̃β +
Keq aβσ
εβ

∂〈cβ〉β

∂t
(4.19a)

B.C.1 : − nβσ · Dβ∇c̃β = −nβσ · Dβ∇〈cβ〉β − Keq
∂〈cβ〉β

∂t
, at Aβσ (4.19b)

Periodicity B.C.: c̃β(r+ li) = c̃β(r), i = 1, 2, 3 (4.19c)

〈c̃β〉β = 0 (4.19d)

where the standard periodicity condition (Eq. (4.19c)) is employed to obtain a local

solution for c̃β in some spatially periodic representative region.

The proposed solution for the aforementioned closure problem is given by a linear

combination of the source terms:

c̃β = bβ · ∇〈cβ〉β + sβKeq
∂〈cβ〉β

∂t
(4.20)

where bβ (a vector field) and sβ (a scalar field) are the closure variables which are position-

dependent functions. These closure variables are governed by the following boundary-

value problems:
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Problem I (for bβ)

vβ · ∇bβ + ṽβ = Dβ∇2bβ (4.21a)

B.C.1 : − nβσ · ∇bβ = nβσ, at Aβσ (4.21b)

Periodicity B.C. : bβ(r+ li) = bβ(r), i = 1, 2, 3 (4.21c)

Constraint : 〈bβ〉β = 0 (4.21d)

Problem II (for sβ)

vβ · ∇sβ = Dβ∇2sβ +
aβσ
εβ

(4.22a)

B.C.1 : − nβσ · Dβ∇sβ = 1, at Aβσ (4.22b)

Periodicity B.C. : sβ(r+ li) = sβ(r), i = 1, 2, 3 (4.22c)

Constraint : 〈sβ〉β = 0 . (4.22d)

Finally, we are now in the position to resolve the distribution of 〈cβ〉β after substituting

the solution for c̃β (Eq. (4.20)) in Eq. (4.15). This leads to the following closed form of

the volume averaged mass transport equation [138]

(
1 +

aβσKeq
εβ

)
∂〈cβ〉β
∂t

+ 〈vβ〉β · ∇〈cβ〉β + Keq uβ · ∇
(
∂〈cβ〉β
∂t

)
= D∗β : ∇∇〈cβ〉β

(4.23)
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which contains the following effective transfer coefficients:

uβ = 〈sβṽβ〉β −
Dβ
Vβ

∫
Aβσ

nβσ sβ dA (4.24)

D∗β = Dβ

[
I +

1

Vβ

∫
Aβσ

nβσ bβ dA

]
− 〈ṽβbβ〉β (4.25)

where uβ is the adsorption-induced vector and D∗β is the total dispersion tensor. It is

important to note at this point that Eq. (4.23) is only valid under certain assumptions

which are: (a) the porosity, εβ, is almost constant (see the constraint given in Eq. (41) in

ref. [138]), (b) the total dispersion tensor, D∗β, remains unchanged, and (c) the equilibrium

coefficient, Keq, is a constant. In addition to these assumptions, if the restriction

Keq vβ
Dβ

lsβ
l ∂〈cβ〉β

∂t

<<

(
1 +

aβσKeq

εβ

)
, (4.26)

is satisfied as well, then the mixed derivative term in Eq. (4.23) can be dropped and

the equation transforms into the standard convection-dispersion form of the macroscale

conservation equation for species X:

(
1 +

aβσKeq
εβ

)
∂〈cβ〉β
∂t

+ 〈vβ〉β · ∇〈cβ〉β = D∗β : ∇∇〈cβ〉β . (4.27)

Henceforth, we would refer to Eq. (4.23) as the complete Volume Averaged Model

(VAMc), and to Eq. (4.27) as the simplified Volume Averaged Model (VAMs). In the

next section, we nondimensionalize both of these models, present their modified versions,

and further investigate their behaviour based on the order of magnitude estimates and

Péclet number.
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Figure 4.2: Schematic of a macroscopic region of length L assumed to be represented by a
periodic arrangement of 2-D unit cells. The right-most sketch is the structure of a prototype
unit cell for solving the closure problems.

4.2.3 Nondimensionalized forms

4.2.3.1 Closure problems and effective coefficients

Before proceeding with nondimensionalization of the volume-averaged models, it is impor-

tant to work out the order of magnitude estimates of the closure variables and set the

definition of Péclet number. The cell Péclet number [82] is defined as

Pe =
vc l

Dβ
(4.28)

where vc is the characteristic velocity and l is the length of the unit-cell, as shown in

Fig. 4.2. The macroscopic momentum equation with negligible inertia [166] and permeabil-

ity K = O(l2) is chosen as an estimate for the characteristic velocity vc such that

vc =
l2 ||∇〈P 〉β||

µ
(4.29)

where ||∇〈P 〉β|| is the average macroscopic pressure gradient applied across the porous

domain. Here, we present a few important remarks on this dimensionless number. The

Péclet number (Pe) represents the ratio of the advection rate to the dispersion rate, and

therefore signifies the affect of flow rate on residence time of the solution in the system.
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Hence, it is important to control Pe in order to optimize the hydraulic detention time, a

critical design parameter, of a porous media-based adsorbent. If we consider the practical

case of porous water filters, then the advantages of this optimization are twofold: first,

it would provide enough time for the completion of chemisorption process such that any

heavy metal ion, such as arsenic, can be captured with greater efficiency, and second, it

would aid in the uniform consumption of adsorptive material in the filter.

Now, since both the macroscopic equations (4.23) and (4.27) directly involve Keq,

we would aim to work within a regulated range of Keq. On the basis of experimental

observations, Keq (in SI unit: m) is found to satisfy the following constraint

Keq � 1 . (4.30)

For instance, Nikolaidis et al. [14] performed field experiments in their arsenic filtration

study which resulted in the linear equilibrium partitioning coefficient, Kd, value of 4300

L/kg for arsenic adsorption onto the iron filings or surface binding. As shown in Appendix

C, when Kd is normalized with the surface area of the adsorbent, it results in Keq value

of 1.14× 10−4 m, which satisfies the above constraint.

It is a common practice in the volume averaging theory to use the order of magnitude

estimates in order to simplify the transport equations by discarding the insignificant or

less influential terms. This often leads to over estimation of the concerned variables,

which, nonetheless, still provide accurate numerical results [82,166]. The complete order

of magnitude analyses for the closure variables bβ and sβ is described in Appendix C.2.

Here, we present the resulting estimates of the closure variables and discuss the constraints

associated with them.

For bβ, we consider two different order of magnitude estimates as follows

bβ = O(l) (4.31)
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bβ = O(l Pe) (4.32)

where the estimate in Eq. (4.31) is the result of bβ’s dependence on the volume source

ṽβ, as can be noted in Eq. (4.21a), and the latter estimate (Eq. (4.32)) is obtained due to

its dependence on the surface source nβσ in Eq. (4.21b). The analysis also suggests that

Eq. (4.32) is an overestimate of bβ since the maximum deviation in ṽβ is predicted to occur

due to the no-slip condition at the fluid-solid interface, Aβσ. We deduce that the estimate

given by Eq. (4.31) is suitable when Pe ≤ 1, whereas Eq. (4.32) is appropriate for use

when the constraint Pe � 1 is in place. In the following two different dimensionless

closure problems for bβ, ∇∗(= ∇ l) represents the dimensionless differential operator at

the length-scale l, v∗β
(
=

vβ
vc

)
denotes the dimensionless point velocity of the β-phase,

and b∗β (=
bβ
l

in problem I a and bβ
l Pe

in problem I b) is the dimensionless vector closure

variable.

Problem I a (bβ = O(l))

Pev∗β · ∇∗b∗β + Pe ṽ∗β = ∇∗2b∗β (4.33a)

B.C.1 : − nβσ · ∇∗b∗β = nβσ, at Aβσ (4.33b)

Periodicity B.C. : b∗β(r+ li) = b∗β(r), i = 1, 2, 3 (4.33c)

Constraint : 〈b∗β〉β = 0 (4.33d)
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Problem I b (bβ = O(l Pe))

Pev∗β · ∇∗b∗β + ṽ∗β = ∇∗2b∗β (4.34a)

B.C.1 : − nβσ · ∇∗b∗β =
1

Pe
nβσ, at Aβσ (4.34b)

Periodicity B.C. : b∗β(r+ li) = b∗β(r), i = 1, 2, 3 (4.34c)

Constraint : 〈b∗β〉β = 0 . (4.34d)

For sβ, we follow the same strategy of analyzing the volume
(
aβσ
εβ

)
and surface (1)

sources in Eqs. (4.22a) and (4.22b), respectively; however, in this case, we arrive at a

unique estimate from both the equations which can be expressed as

sβ = O
(

l

Dβ

)
. (4.35)

The order of magnitude presented in Eq. (4.35) is the result of a balancing act between

the diffusive and adsorptive fluxes and is independent of Pe. Thus, this estimate is

applicable across a wide range of Pe values. In addition to the variables defined for

the dimensionless problems corresponding to bβ, here we use s∗β

(
=

sβ
l
Dβ

)
to denote the

dimensionless scalar closure variable. Also, for nondimensionalization we assume that a

reasonable estimate of the interfacial area per unit volume of the porous media aβσ is

given by εβ l−1. Thus, the dimensionless form of the closure problem associated with sβ

is as follows:
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Problem II a (sβ = O
(

l
Dβ

)
)

Pev∗β · ∇∗s∗β = ∇∗2s∗β + 1 (4.36a)

B.C.1 : − nβσ · ∇∗s∗β = 1, at Aβσ (4.36b)

Periodicity B.C. : s∗β(r+ li) = s∗β(r), i = 1, 2, 3 (4.36c)

Constraint : 〈s∗β〉β = 0 . (4.36d)

After developing the nondimensionalized forms of the closure problems, we proceed

further to formulate the dimensionless forms of the effective transfer coefficients, the

adsorption-induced vector, uβ, and the total dispersion tensor, D∗β. At this point, it

must be noted that uβ is already a dimensionless vector; however, the two terms on the

right-hand side (RHS) of Eq. (4.24) still need to be manipulated in order to obtain a

pure dimensionless form of this parameter. Similar to the total dispersion tensor D∗β,

this coefficient comprises of two parts, namely the adsorption-induced hydrodynamic

dispersion vector and the adsorption-induced diffusivity vector. The former is the result

of spatial fluctuations in the velocity field whereas the latter characterizes the surface

adsorption process. After using the previously defined scaling variables and the result

obtained in Eq. (4.35), uβ can be reformulated as

uβ = Pe 〈s∗βṽ∗β〉β −
1

V ∗β

∫
A∗βσ

nβσ s
∗
β dA

∗ , (4.37)

which can be simplified further if we decide to estimate V ∗β according to a cubic unit-cell

geometry, i.e. V ∗β =
Vβ

V (=l3)
, which is equivalent to the volume fraction or porosity (εβ) of
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the medium in case of a single-phase fluid flow. This allows us to rewrite uβ as

uβ = Pe 〈s∗βṽ∗β〉β −
1

εβ

∫
A∗βσ

nβσ s
∗
β dA

∗ . (4.38)

When Pe � 1, the convective term in the adsorption-induced vector (first term on the

RHS of Eq. (4.38)) gains much traction and contributes significantly to uβ in comparison

to the other term. However, even at high Pe, one must weigh in the contribution of the

second term on the RHS of Eq. (4.38) before safely neglecting it since it closely depends

on the porosity and interfacial area which is usually very high for excellent porous media-

based adsorbents.

Next, the dependence of the total dispersion tensorD∗β on bβ indicates that we prepare

two different dimensionless forms based on the constraints over Pe. These forms are as

follows:

D∗∗β =
D∗β
Dβ

=

[
I +

1

V ∗β

∫
A∗βσ

nβσ b
∗
β dA

∗

]
− Pe 〈ṽ∗βb∗β〉β, if bβ = O(l)(4.39a)

D∗∗β =
D∗β
Dβ

=

[
I +

Pe

V ∗β

∫
A∗βσ

nβσ b
∗
β dA

∗

]
− Pe2 〈ṽ∗βb∗β〉β, if bβ = O(l Pe).(4.39b)

Similar to uβ transformation discussed in Eqs. (4.37) and (4.38), if V ∗β is assumed to be

equal to εβ, then the above given equations can be transformed to

D∗∗β =
D∗β
Dβ

=

[
I +

1

εβ

∫
A∗βσ

nβσ b
∗
β dA

∗

]
− Pe 〈ṽ∗βb∗β〉β, if bβ = O(l)(4.40a)

D∗∗β =
D∗β
Dβ

=

[
I +

Pe

εβ

∫
A∗βσ

nβσ b
∗
β dA

∗

]
− Pe2 〈ṽ∗βb∗β〉β, if bβ = O(l Pe).(4.40b)

As expected, Pe is found to be well-integrated with the hydrodynamic dispersion tensor

term. When Pe ≤ 1, i.e., diffusion dominates the transport processes, Eq. (4.40a) comes

to the fore and D∗β is mainly reduced to Deff , whereas when Pe � 1, Eq. (4.40b)
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comes into play where Pe, through its second power, makes Dβ the dominant term when

compared to Deff . Note that D∗β in Eq. (4.25) is called the total dispersion tensor which

is the sum of Deff , the effective diffusivity tensor, and Dβ, the hydrodynamic dispersion

tensor [138].

As explained in the previous chapter of this two-part chapter series, in order to

compute the coefficients uβ and D∗β for the upscaled models, first, the total mass and

momentum transport equations applicable at the microscale are solved in an REV, e.g.

in the unit-cell shown in Fig. 4.2, to determine the distribution of vβ. Then the resulting

velocity field is used to compute the solutions for the closure problems I and II, and

finally, the fields of the closure variables, bβ and sβ, are employed in Eqs. (4.38) and

(4.40a-4.40b) to evaluate the effective transfer coefficients.

4.2.3.2 VAMc and VAMs

After establishing the nondimensionalized forms of the closure variables and effective

coefficients, we turn our attention towards formulating the dimensionless forms of VAMc

and VAMs, Eqs (4.23) and (4.27) respectively. With different constraints pertaining

to length-scale (Eq. (4.6)), time-scale (Eq. (4.18)) and physical parameters (Eq. (4.30))

already in place, we define the following dimensionless variables:

∇∗L = ∇L L , X∗ =
x

L
, T ∗ =

tDβ
L2

, v∗β =
vβ
vc

, and c∗β =
cβ
cin

. (4.41)

Here, ∇L is the differential operator at the length-scale L, ∇∗L is the dimensionless

differential operator at the length-scale L,X∗ is the x-direction coordinate nondimensiona-

lized with the length-scale L, T ∗ is the dimensionless time variable corresponding to

the length-scale L, cin is the constant inlet concentration of species X, and c∗β is the

dimensionless point concentration of species X in the β-phase. In addition, we define the
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Damköhler number [167] or the dimensionless adsorption isotherm A as follows:

A =
Keq

l
Dβ

l2

Dβ

(
=
Keq

l

)
=

adsorption time scale
diffusion time scale

. (4.42)

Here, based on the assumption aβσ ∼ εβ l
−1, the Damköhler number A can also be

expressed as

A =
aβσKeq

εβ
(4.43)

where the parameters Keq, aβσ, and εβ can be directly obtained from batch experiments

and material characterization tests. Also, we assume that the macroscopic length L is

equal to the length of a chain of N square unit cells (see Fig. 4.3) each of length l

such that L = N × l. Then, on nondimensionalizing Eq. (4.23) using the definitions

given in Eq. (4.41) and performing algebraic manipulations, we arrive at the following

dimensionless form of VAMc:

∂〈c∗β〉β

∂T ∗
+
PeN

1 + A
〈v∗β〉β·∇∗L〈c∗β〉

β +
A

(1 + A)N
uβ·∇∗L

(
∂〈c∗β〉β

∂T ∗

)
=

1

1 + A
D∗∗β : ∇∗L∇∗L〈c∗β〉β .

(4.44)

It is important to note that Pe is the Péclet number at microscale l, whereas PeN in

Eq. (4.44) can be regarded as the Péclet number at macroscale L. Since the porous

medium under consideration is assumed to be homogeneous, both the tensors, D∗∗β and

∇∗L∇∗L〈c∗β〉β, on the RHS of Eq. (4.44) are symmetric in nature [168] and involve a double

dot product between them. Furthermore, this transport equation can be expressed in its

1-D form along the x-direction as follows:

∂〈c∗β〉β

∂T ∗
+

PeN

1 + A
〈v∗β〉βx

∂〈c∗β〉
β

∂X∗
+

A

(1 + A)N
uβ, x

∂

∂X∗

(
∂〈c∗β〉β

∂T ∗

)
=

1

1 + A
D∗∗β, xx

∂2〈c∗β〉β

∂X∗2

(4.45)
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Figure 4.3: Illustration of the 2-D geometry of porous media used to conduct the direct
numerical simulations (DNS). The length of the macroscopic region is assumed to be L = 100 l .

where 〈v∗β〉βx is the x-component of 〈v∗β〉β, uβ, x is the x-component of the adsorption-

induced vector uβ, and D∗∗β, xx is the xx-component of the D∗∗β tensor.

The procedure to obtain the dimensionless form of VAMs is straightforward. For the

macroscopic model considered in this study, the length-scale associated with the spatial

variation of ∂〈cβ〉β
∂t

is L and the spatial variation in sβ takes place at the microscopic

length-scale l. Hence, while keeping in mind the dimensionless form of the restraint given

in Eq. (4.26), which would be

A

N
Pev∗β � (1 + A) , (4.46)

the mixed derivative term may be dropped from Eq. (4.45) and the resulting 1-D nondim-

ensional macroscale equation for VAMs would become

∂〈c∗β〉β

∂T ∗
+

PeN

1 + A
〈v∗β〉βx

∂〈c∗β〉
β

∂X∗
=

1

1 + A
D∗∗β, xx

∂2〈c∗β〉β

∂X∗2
. (4.47)

4.2.3.3 Pore-scale model

The following subsection explains the steps involved in nondimensionalization of the pore-

scale model and presents the time- and length-scale correlations between the upscaled and

microscale models.

It is necessary to compare the performance of both the VAMc and VAMs models with

the direct numerical simulation (DNS) results obtained at the pore-scale level. To achieve

this purpose, we numerically investigate the boundary-value problem (Eqs. (4.1-4.5))
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established at the microscale. But before proceeding, similar to the case of macroscale

equations, we nondimensionalize this problem based on the following dimensionless variables:

∇∗ = ∇ l , x∗ = x

l
, y∗ =

y

l
, t∗ =

tDβ
l2

, v∗β =
vβ
vc
, c∗β =

cβ
cin

, A =
Keq

l
, and P ∗ =

l P

µ vc
.

(4.48)

Here, ∇∗ is the dimensionless differential operator at the length-scale l, x∗ is the x-

direction coordinate nondimensionalized with the length-scale l, y∗ is the y-direction

coordinate nondimensionalized with the length-scale l, t∗ is the dimensionless time variable

corresponding to the length-scale l, and P ∗ denotes the dimensionless hydrodynamic

fluid pressure in the β-phase. After substituting these variables in Eqs. (4.1-4.5), the

dimensionless version of the problem can be summarized as follows:

∂c∗β
∂t∗

+ Pe (v∗β · ∇∗c∗β) = ∇∗2c∗β (4.49)

B.C.1 : − nβσ · ∇∗c∗β = A
∂c∗β
∂t∗

, at Aβσ (4.50)

0 = −∇∗P ∗ + ∇∗2v∗β (4.51)

∇∗ · v∗β = 0 (4.52)

B.C.2 : v∗β = 0, at Aβσ . (4.53)

Furthermore, the computational domain shown in Fig. 4.3 is subjected to the following
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set of initial and (Dirichlet and Neumann type) boundary conditions:

c∗β = 0 , when t∗ = 0 (4.54a)

c∗β = 1 , at x∗ = 0 (4.54b)
∂c∗β
∂x∗

= 0 , at x∗ =
L

l
(4.54c)

c∗β (x
∗, y∗ = 0, t∗) = c∗β (x

∗, y∗ = 1, t∗) (4.54d)

P ∗ = P ∗in (= N) , at x∗ = 0 (4.54e)

P ∗ = 0 , at x∗ =
L

l
(4.54f)

v∗β (x
∗, y∗ = 0, t∗) = v∗β (x

∗, y∗ = 1, t∗) (4.54g)

where Eqs. (4.54d) and (4.54g) represent the periodicity boundary conditions applied at

the top and bottom of the DNS model, and the pressure differential applied across the

domain due to the combination of Eqs. (4.54e) and (4.54f) has an effect such that each

unit-cell in Fig. 4.3 is subjected to a unitary pressure gradient.

Now, since different length and time scales have been used to nondimensionalize the

volume-averaged and the pore-scale models (see Eqs. (4.41) and (4.48), respectively), we

need to develop suitable length- and time-scale correlations in order to draw comparisons

between the two systems. For this, if a point x in the laboratory frame of reference is

to be located in both the coordinate systems, then based on Eqs. (4.41) and (4.48) we

deduce the following length-scale relation:

∇∗L = N ∇∗ . (4.55)

Similarly, in order to study the results at any given time t in the laboratory frame of

reference, the following dimensionless time-scale relation should be used:

T ∗ = t∗ /N2 . (4.56)
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An alternate nondimensionalization approach based on the characteristic time for

convection at the pore-scale has been put forward in Appendix D. In this case, we define

the Damköhler number Da (Eq. (D.4)) which is the ratio of adsorption to convection

time scales, and accordingly propose nondimensionalized forms of the pore-scale and

volume-averaged models.

4.3 Results and discussion

In this section, we focus on the following points: (a) validation of the effective transfer

coefficients, (b) discuss the effects of change in porosity and number of particles on the

effective transfer coefficients, and (c) examine the performance of the volume-averaged

models with respect to the pore-scale model and confirm their accuracy with an analytical

solution available in the literature [151].

4.3.1 Validation of the Effective Transfer Coefficients

The effective transfer coefficients defined in Eqs. (4.38) and (4.40a-4.40b) rely on the

microstructural information available at the pore-scale, volume geometry, and the Péclet

number. At this point, we also define the particle Péclet number Pep based on the particle

size [82], and would present the numerical results with reference to it. Its definition and

relation with the cell Péclet number is as follows

Pep =
||〈vβ〉β|| lσ
Dβ

· εβ
1− εβ

= Pe · εβ
1− εβ

· lσ
l
· ||〈v∗β〉β|| (4.57)

where ||〈v∗β〉β|| is the magnitude of the dimensionless intrinsic phase average velocity. Now,

in order to track the evolution of the effective transfer coefficients, numerical simulations

were performed across two parameters: (a) Pep ranging from 10−1 to 103 and (b) porosity

(εβ) values of 0.4 and 0.8, in the 2-D unit-cell geometry shown in Fig. 4.2. Here,

it is important to mention that the numerical solutions reported in this work were

obtained by using the finite element solver COMSOL Multiphysics after conducting a
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Figure 4.4: Comparison of the longitudinal (cases (a) and (b)) and lateral (cases (c) and (d))
components of the dispersion tensor D∗∗β with the literature results [166]. The porosity values
are εβ = 0.4 for the cases (a) and (c), and εβ = 0.8 for the cases (b) and (d).

mesh independence study via grid refinement [63].

Valdés Parada et al. [166] have presented upscaled models for a chemical species

undergoing convective transport while sustaining a first-order heterogeneous reaction.

Under prescribed length-scale contraints and after reasonable simplifications, they have

shown that the closure problem for bβ (Eqs. (41) in ref. [166]) can be used to determine

the total dispersion coefficient, and that this resembles to the closure problem developed

by Whitaker (Eqs. (3.3-35) in ref. [82]) for passive dispersion in porous media. In the same

vein, the closure problem formulated for bβ (Eqs. (4.40a-4.40b)) in the present work only

includes the effect of passive solute transport in porous media, and hence, expectedly,

resembles Eqs. (41) in ref. [166]. Thus, we use the data from Fig. 4 in ref. [166] to

validate the dimensionless forms of the total dispersion tensor coefficients along the x-

and y-directions.
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Fig. 4.4 shows the evolution of the longitudinal and transverse components of the total

dispersion tensor D∗∗β across a range of Pep over two different porosity (εβ) values of 0.4

and 0.8. The results from the present work, denoted by the solid black lines in Fig. 4.4,

are found to be in excellent agreement with that reported in the literature [166], shown

by the hollow blue circle markers. As expected, the D∗∗β, xx or the longitudinal component

of the D∗∗β tensor increases with the increase in Pep. This observation can be directly

explained from Eqs. (4.40a-4.40b) where increase in velocity (that leads to an increase in

Pep) increases this dispersion coefficient. When Pe ≤ 1, Eq. (4.40a) is used to find the

dispersion coefficient values, whereas Eq. (4.40b) is employed when Pe exceeds 1. On the

other hand, the application of unidirectional pressure drop across the regular geometry

shown in Fig. 4.3, leads to reduced lateral motion of the fluid around the solid particles,

which translates into a diminished D∗∗β, yy, the transverse component of the D∗∗β tensor, as

seen in Figs. 4.4c and 4.4d.

It can also be observed that the dispersion coefficient D∗∗β, xx shows higher values for

the lower porosity model (εβ = 0.4) when compared to the higher porosity case (εβ = 0.8)

for Pep > 1. The effect of decrease in porosity and the consequent increase in the surface

area of the particle provides the explanation for this observation according to Eqs. (4.40a-

4.40b).

Figure 4.5: 2-D unit cells used for estimation of the effective transfer coefficients, (a) εβ = 0.65
and n = 1, (b) εβ = 0.65 and n = 2, (c) εβ = 0.85 and n = 1, and (d) εβ = 0.85 and n = 2. The
descending order of the fluid-solid interfacial area in these unit cells is as follows: case (b), case
(a), case (d), and case (c).
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Figure 4.6: Variation in the (a) longitudinal dispersion coefficient D∗∗β, xx with Pep and (b)
x-component of the adsorption-induced vector uβ (uβ, x) with Pep. Both of these coefficients
are studied across two parameters: number of particles (n = 1, 2) and porosity (εβ = 0.65, 0.85),
as shown in Fig. 4.5.

4.3.2 Effective Medium Coefficients

This section focuses on analyzing the effects of change in porosity (εβ) and number of

particles (n) on the effective medium coefficients. The hypothesis behind this exercise is

to test if the increase in surface area of the particles leads to increased effective transfer

coefficients. This test would help in accurately modeling strong adsorption, and hence, in

general, underline the significance of high interfacial area inherent in porous adsorbents.

To test this hypothesis, the 2-D unit-cell geometry shown in Fig. 4.2 is subjected to

variations in both the aforementioned parameters. In principle, we consider the following

four cases: (a) εβ = 0.65 and n = 1, (b) εβ = 0.65 and n = 2, (c) εβ = 0.85 and n = 1,

and (d) εβ = 0.85 and n = 2. As sketched in Fig. 4.5, in cases when n = 2, the particles

are equidistantly placed in a horizontal arrangement inside the unit-cell.

The results in Fig. 4.6a replicate the classical correspondence between the dimensionless

longitudinal dispersion coefficient and Pep, as has been widely reported in the literature

[82,166,169,170]. It can also be observed from this figure that D∗∗β, xx’s dependence on Pep

until O(10), more or less follows a similar trend for all the considered cases. However,
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as Pep further increases1, the trendlines become more distinguishable and eventually

the longitudinal dispersion coefficient corresponding to case (b) manifests itself as the

maximum in comparison to the remaining cases. The trendlines near Pep of O(1000) line

up according to the descending order of the interfacial surface area values corresponding

to the different cases under study. This value is the highest for case (b), followed by case

(a), and it is the lowest for case (c).

Now, let the attention be directed towards the adsorption-induced vector uβ. This

coefficient is attached to the mixed derivative term in Eq. (4.45), which is mostly discarded

in many applications in order to convert the macroscopic species-transport equation

into the conventional convection-dispersion form. To the best of our knowledge, no

experimental data or theories are available for the validation of this effective medium

coefficient. As pointed out by Quintard and Whitaker [126], this non-traditional term

may not necessarily be negligible and it frequently appears in the non-local equilibrium

models [153, 171–173]. Hence, it is important to quantify the contribution of this non-

classical term to the convective transport and accordingly make an informed decision to

either retain or neglect it. Fig. 4.6b depicts the evolution of this coefficient with respect

to Pep. It can be noted that this term has an almost negligible value until Pep of

O(10) for all the considered cases here, which leads to the vanishing of its product with

the mixed derivative term in Eq. (4.45). However, an interesting development awaits

as the convective transport regime gains prominence with Pep increasing to O(1000).

When Pep exceeds O(10), uβ, x’s value increases rapidly for all the cases under study

and the trendlines become discernible. Eventually, similar to the pattern observed for

D∗∗β, xx, the uβ, x trendline corresponding to the case of εβ = 0.65 and n = 2 shows the

steepest ascent and displays the maximum value in comparison to the remaining cases.

The order of the trendlines also remains the same as found in the analysis of D∗∗β, xx.

1It is important to note that for the Darcy’s law to remain valid, the particle Reynolds number (Rep)
must be smaller than 1 [153]. In our numerical study, the largest Rep was computed using the largest
velocity (corresponding to Pep = 1000) and particle diameter. This led to the Rep value of 0.15, which
well satisfies the aforementioned creeping-flow constraint.
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Again, the higher interfacial area can be deemed as the major cause behind obtaining

a higher effective medium coefficient value and this can be interpreted from Eq. (4.38).

In the present work, although a relatively simple periodic unit-cell, as shown in Fig. 4.2,

and its modifications have been used for illustrative purposes, unit cells corresponding

to real-world adsorbents are bound to be highly intricate, and thus would have much

greater interfacial areas associated with them. Thus, during modeling of such cases, it

is imperative to carefully gauge the contribution of non-classical terms like uβ. As we

shall see below, such terms may affect the accuracy of predictions of the volume-averaged

models.

4.3.3 Comparison of Microscale and Macroscale simulations

In this section we compare the predictions of the volume-averaged models with the

predictions of the proposed micromodels based on the DNS. To achieve this purpose,

a computational domain consisting of 100 in-line unit cells each of side-length l was

designed, as shown in Fig. 4.3. This model resembles a porous medium made of regularly

arranged parallel cylinders with the fluid flow directed perpendicular to the cylinder axis.

The nondimensionalized boundary-value problem at the pore-scale given by Eqs. (4.49-

4.54g) was solved in this chosen model, whereas the upscaled equations, Eqs. (4.45) and

(4.47), were solved in one-dimension along a line of unit length. These two different

space-time coordinate systems were then synchronized by using the correlations given in

Eqs. (4.55) and (4.56).

The simulation codes developed for the upscaled models are validated by comparing

the results with that of Valdés Parada et al. [166] under specific circumstances. It can be

inferred from ref. [166] that in the absence of heterogeneous first-order chemical reaction,

i.e. the passive dispersion case (φ2 = 0), the macroscale model given by Eq. (48)

transforms into the standard convection-dispersion transport equation. Analogously, in

the present work, the volume-averaged models given by Eqs. (4.45) and (4.47), reduce to
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Figure 4.7: Comparison of the evolution of the intrinsic phase average concentration between
the present work and the literature [166]. Assuming εβ = 0.8, case (a) corresponds to A = 0,
Pep = 100, and case (b) corresponds to A = 0, Pep = 1000.

that same convection-dispersion form under the no adsorption (A = 0) condition. Thus,

the data from Figs. 8a and 9a in ref. [166] corresponding to the no-slip boundary condition

is used for validation of the code developed for the present work. It must be noted that

the average concentration was tested at the following positions: (a) near the entrance,

at x∗ = 4.5, (b) near the middle, at x∗ = 49.5, and (c) near the exit, at x∗ = 94.5, of

the computational domain shown in Fig. 4.3. As reported in Fig. 4.7, the concentration

predictions made using the current code for both Pep of O(100) and O(1000) are in

excellent agreement with the literature [166], which helps reinforce its accuracy. The

minor divergence observed near the onset of the concentration profiles at position x∗ = 4.5

maybe due to the use of compound order of magnitude estimate proposed for bβ in

ref. [166]. On proceeding farther from the inlet and with increasing time, the difference

between the intrinsic phase average concentration predictions occurring due to the above-

mentioned estimate and our estimates in Eqs. (4.31) and (4.32) becomes barely noticeable.

Now, in order to better circumstantiate the usefulness of the upscaled models, the

Damköhler number A and the convection-based Pep are estimated from experiments

carried out for arsenic removal through the use of adsorbents. As shown in Appendix C.1,

a reasonable estimate of A is 0.1 for iron filing filters in ref. [14]. Similar order of
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magnitude estimates for artificial adsorbents can be procured from other experimental

results [13, 174]. On the other hand, Pep ∼ 100 based on the filtration velocity used in

the arsenic adsorption experiment of [14]. In summary, assuming εβ = 0.8, the following

four cases are investigated: (a) Pep = 10 and A = 0, (b) Pep = 10 and A = 0.1, (c)

Pep = 100 and A = 0, and (d) Pep = 100 and A = 0.1. Here, the cases (a) and (c)

correspond to the non-adsorptive or passive conditions, whereas the cases (b) and (d)

conform to active adsorption on the surface of the solid particles shown in Fig. 4.3. Also,

the three testing positions in the computational domain remain the same, as previously

defined.

It is of some interest to introduce an analytical solution to solve the upscaled model

given in Eq. (4.47). Kumar et al. [151] have proposed a one-dimensional solution for

an advection-diffusion type equation with temporally dependent dispersion coefficient;

however, it can easily be used to study the transport occurring in an initally solute-free

finite domain with constant dispersion coefficient as well. The solution is expressed as:

C(x, t) = C0A(x, t) (4.58)

where C represents the solute concentration at position x along the longitudinal direction

at time t, C0 is a reference concentration, and

A(x, t) =
1

2
erfc

(
x− u0t
2
√
D0t

)
+

1

2
exp

(
u0x

D0

)
erfc

(
x+ u0t

2
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D0t

)
+

1

2

[
2 +

u0(2x0 − x)
D0

+
u20t

D0

]
× exp

(
u0x0
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)
erfc

(
(2x0 − x) + u0t

2
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D0t

)
−

√
u20t

πD0

exp

[
u0x0
D0

− (2x0 − x+ u0t)
2

4D0t

]
.

Here, u0 represents the uniform flow velocity, D0 is the constant dispersion coefficient,

and x0 indicates the length of the finite domain. This method will provide another route

to test the accuracy of VAMs vis-à-vis the most accurate, DNS results. The analytical
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Figure 4.8: Comparison of the intrinsic phase average concentration profiles at three different
locations in the macroscale model illustrated in Fig. 4.3. The predictions are made using
the direct numerical simulations (DNS), volume-averaged methods (VAMc and VAMs), and
analytical solution (ALS) approaches. Assuming εβ = 0.8, case (a) uses A = 0, Pep = 10,
case (b) uses A = 0.1, Pep = 10, case (c) uses A = 0, Pep = 100, and case (d) uses A = 0.1,
Pep = 100.

solution results are denoted by ALS in Fig. 4.8.

Fig. 4.8 compares the dimensionless intrinsic phase average concentration predictions

made through the DNS, VAM, and ALS approaches. The numerical results corresponding

to the DNS and VAM methods show remarkable agreement with each other. As shown

in Figs. 4.8a and 4.8c, under passive condition (A = 0), the macroscale simulation curves

simply correspond to VAMs and are observed to almost completely overlap with the DNS

curves at all the three testing positions. However, in the higher Pep case shown in Fig. 4.8c,

a marginal difference between these curves can be noticed near the inlet of the chosen

domain (x∗ = 4.5). Next, the simulation results pertaining to the adsorption condition

(A = 0.1) for the DNS and VAM approaches are observed to be quite close, as illustrated
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in Figs. 4.8b and 4.8d. This demonstrates that the procedure followed to evaluate the

effective transfer coefficients is reliable and accurate with reasonable assumptions. In

these cases, the difference between the VAMc and VAMs curves is hardly discernible

which suggests that VAMc offers marginal improvement and can be replaced by VAMs,

or in other words, VAMs is a reasonably good upscaled model for the adsorptive transport

conditions considered here. This inference can be mathematically justified through the

use of constraint given in Eq. (4.46), where the ratio A
N
Pev∗β(= 0.05) is significantly

smaller than (1 + A)(= 1.10).

The ALS results in Fig. 4.8 help to further reinforce the accuracy of VAMs predictions.

Although the concentration profiles near the inlet of the domain (x∗ = 4.5) in cases (a)

and (b) show a large variability with respect to the DNS and VAM outcomes at low Pep;

nonetheless, this considerable difference rapidly diminishes as one progresses towards

the center (x∗ = 49.5) and exit (x∗ = 94.5) regions. It is important to note that the

predictions made by VAMs are consistent with (or mostly better than) ALS for all the

cases under study.

The effect of increase in Pep (i.e., convection-favoured regime) on adsorption is of

prime importance. Pep can directly be associated with the flow rate or filtration velocity

through an adsorbing porous medium. As expected, when Pep increases from 10 to

100, the mass of liquid passing through the filter in unit time increases, and hence the

adsorption process accelerates, and therefore it takes lesser time for the ‘consumption’

of entire adsorptive material. The result is clearly evident in Fig. 4.8 where t∗ reduces

from O(10) to O(1) as Pep increases from 10 to 100. This directly impacts the hydraulic

detention time of the contaminant in the filter, which is an important design parameter

for a filtration system [14,160]. Hence, higher flow rates would reduce the residence time

of the solution in the system which may affect the adsorption efficiency of the filter, as

noted in experimental studies [175].
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4.4 Conclusions

In this chapter, we continued to build on the theoretical developments put forward by

Pillai and Raizada [138] and carried out a numerical investigation on the problem of

mass transport and adsorption in homogeneous porous media using the volume averaging

method. A brief overview of the volume averaging process is presented to upscale the

boundary-value problem applicable at the microscale to macroscopic effective models.

Two variants of the macroscale models are introduced: (a) complete Volume Averaged

Model (VAMc) and (b) simplified Volume Averaged Model (VAMs), which involve two

effective transfer coefficients, namely, the total dispersion tensor, D∗β, and the adsorption-

induced vector, uβ. VAMc is the original upscaled model, whereas VAMs is obtained after

discarding the mixed derivative term in VAMc.

The nondimensionalized forms of the closure problems, effective coefficients, microscale,

and macroscale models were formulated based on the order of magnitude estimates of

closure variables bβ and sβ. The total dispersion tensor coefficient D∗β was validated and

found to be in excellent agreement with the literature [166]. The influence of the solid

phase microstructure and flow rate on the effective medium coefficients was thoroughly

assessed through variations across two parameters, namely, the porosity and the number

of particles inside the unit-cell. The results illustrated an increase in the coefficients’

values corresponding to decrease in porosity and increase in the number of particles. The

resulting increase in the interfacial area inside the unit-cell was assessed to be the cause

behind this outcome.

The predictive capabilities of the upscaled models were assessed by comparing the

dynamics of average concentration profiles with direct numerical simulations at the pore-

scale. Four investigative scenarios were considered by varying the Damköhler number

(or the dimensionless adsorption isotherm) A and Pep values. The upscaled models,

when upholding the spatial and temporal constraints, displayed excellent results on
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comparison with the DNS. This emphasizes the effectiveness of the micro-macro coupling

encapsulated in the closure formulation proposed by Pillai and Raizada [138]. VAMc

was observed to offer marginal improvement over VAMs for the investigative conditions

assumed in this study and this was substantiated on the basis of constraint given in

Eq. (4.46). In addition, the macroscale simulations outperformed the analytical solution

results for most of the cases under study, which further highlights the accuracy of the

volume averaging method. For future work, the upscaled models would be employed in

arsenic filtration and related research to perform experimental validation and optimize

the hydraulic detention time of an adsorptive filter. Such applications could certainly

corroborate their practicality and affirm the presented conclusions.

Overall, it may be concluded that the volume-averaged models present a pragmatic

alternative for comprehensively studying the adsorption phenomenon in porous arsenic

filters in lieu of employing direct numerical simulations at the pore-scale level, which

entails a daunting challenge to surmount given the complex pore microstructures of real-

world adsorbents. However, the selection of a suitable REV incorporating appropriate

topographic features of the porous media, determination of the Damköhler number A,

and adherence to the spatio-temporal constraints, remain the keys to accurate modeling

of the adsorption of arsenic in porous filters using the upscaled models.
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CHAPTER 5

Modeling Transport and Adsorption of Tracer Species.

Part III: A Comparison with Experiments

5.1 Introduction

Anthropogenic activities are dramatically changing nutrient levels in many rivers, wetlan-

ds, estuaries, and coastal waters around the world [176–178]. As a direct consequence,

typical eutrophication symptoms in the form of expanding hypoxic and anoxic zones, and

spreading of toxic harmful algal blooms (HABs) are becoming increasingly common in

waters worldwide [179]. Vollenweider in his famous critical review [180] of the eutrophica-

tion problem concluded that increases in the nutrients phosphorus and nitrogen from

sources outside the lake were probably the causes of eutrophication. Other researchers

[181,182] affirmed this fact and suggest phosphorus (P) losses to surface waters to be one

of the major causes of eutrophication. Schindler et al. [182] reviewed several long-term

phosphorus control studies at ecosystem scales and presented evidence that reduction of

phosphorus is effective in controlling eutrophication (see Table 1 in [182]).

In an effort to tackle this problem, an adsorbent prepared by functionalized zeolite

for removal of phosphate was developed by Silva research group at the University of

Wisconsin-Milwaukee Our primary aim in this chapter is to test the volume-averaged

models proposed in Chapters 3 and 4 by solving the problem of contaminant transport

in this zeolite based porous adsorbent. Here, the concentration predictions from the

upscaled models would be compared with the experimental results.

Overall, the chapter is organized as follows. In Section 5.2, we describe the materials

and methods related to the column-flow experiment. Here, we also discuss the process of
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Figure 5.1: The experimental setup of the batch adsorption tests.

capturing the micro-tomographic images of the zeolite material. In Section 5.3, we provide

details related to the model development, which includes REV preparation and numerical

simulations. In Section 5.4, we discuss the results obtained from the column experiments

and numerical simulations. Finally, in Section 5.5, we offer concluding remarks.

5.2 Materials and methods

5.2.1 Preparation of synthetic solution

All chemicals used in this study were of analytical grade. The experiment was conducted

with synthetically prepared P spiked solution. To prepare the influent solution, phosphorus

stock solution (Fisher Chemical) of concentration 100.0 mg/L was used to spike deionized

(DI) water to the desired concentration of 50.0 mg/L. The experimental value of this

concentration varied from 47.8 mg/L to 51.3 mg/L with an average value of 49.9 mg/L,

and a standard deviation of 1.9 mg/L. The pH of the synthetic solution was measured

using the Oakton PCTSTestr 50 and noted to be 5.8± 0.2.
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5.2.2 Batch adsorption experiments

Batch adsorption tests were performed to evaluate the adsorption capacity of the filtration

material used in this study. For this, zeolite adsorbent samples weighing 1.0 gram were

placed in flasks filled with 200 mL of P spiked solution. High phosphorus concentration

of 50.0 mg/L was used to allow for full evaluation of the performance and capacity of the

zeolite material. As shown in Fig. 5.1, the flasks were fastened to a ORBI Benchmark

Shaker plate and shaken at 180 rpm for 24 h at room temperature (25± 2◦C). After 24 h

of contact time, an aliquot of 2.5 mL was sampled from each flask for residual phosphorus

in the solution.

The quantity of adsorbed phosphorus, qe (mg/g) was calculated by

qe =
(Ci − Ce)Vl

m
(5.1)

where Ci (mg/L) and Ce (mg/L) are the initial and equilibrium phosphorus concentration,

respectively, Vl (L) is the volume of phosphorus solution, and m (g) is the mass of

adsorbent sample. The adsorption capacity qe of the adsorbent for P was determined to

be 5.0 ± 0.5 mg/g and the equilibrium concentration of the sorbent Ce was assessed to

be 25.5± 2.3 mg/L.

Figure 5.2: A schematic diagram of the column-flow experiment.
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Figure 5.3: The experimental setup of the column-flow experiment.

5.2.3 Column-flow experiments

The performance of the zeolite absorbent was examined and quantified by conducting

bench-scale column-flow experiments. A schematic diagram of the experimental setup is

illustrated in Fig. 5.2. The column filter was prepared by packing 8.0 g of functionalized

zeolite granules in a glass column with an inner diameter of 12 mm and a length of 275

mm. After filling up the adsorbent in the burette, the height of material was 85.3 mm. A

peristaltic pump (VWR, USA), as shown in Fig. 5.3, was used to inject P spiked solution

from the influent container to the functionalized zeolite particles while maintaining a flow

rate close to 0.02 mL/s throughout the experiment.

Sampling for the influent samples when treated with the adsorbent was conducted at

the intervals of 15 minutes over a period of 480 minutes. Effluent samples were collected

directly at the bottom end of the burette. All sample collection bottles were sterile,

clear polystyrene tubes. 2.5 mL aliquot of each sample was analyzed for soluble reactive

phosphorus (SRP) by using the UV-VIS Spectrophotometer (Shimadzu UV-2600). For

detection of P, the spectrophotometer measured the absorption of light by the sample at

885 nm wavelength.

Three trials of this experiment were conducted in order to account for the randomness
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Figure 5.4: (a) An artificially prepared sample holder to store functionalized zeolite, and (b)
micro-CT scanner with the sample holder secured to the mounting fixture.

and scatter in the experimental data, and to obtain more accurate average P concentration

values of the effluent.

5.2.4 Micro-CT scans of functionalized zeolite

The micro-tomographic images of the zeolite adsorbent were captured using a micro-CT

scanner at the Nanofabrication and Microscopy Facility, Wauwatosa, WI USA. For this,

first, a sample holder for zeolite was made from the bulb of a transfer pipette and a tooth

pick, as shown in Fig. 5.4a. Next, the zeolite material was filled into this apparatus, which

was then secured to the ZEISS sample mount, as shown in Fig. 5.4b.

The adsorbent sample was examined using a 0.4× objective with 80 kV voltage and

10W power. No filter was selected for the source and the exposure time was set to 3s

accumulations with binning set to 2. The micro-CT scans in the three cartesian planes,

as illustrated in Fig. 5.5, were taken at a single location in the sample. The sampling

location in the sample holder and the instrument details related to the detector and

source position of the scanner are given in Table 5.1.
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Table 5.1: Sampling location, detector and source position information for the micro-CT
scanner.

Parameter Value
X-coordinate of the sample 368.85 µm
Y-coordinate of the sample 13.1 µm
Z-coordinate of the sample −1.1 µm
Detector 179.475 mm
Source −50.003 mm
Cone angle 8.66◦

Fan angle 8.66◦

5.3 Model development

Phosphorus is transported in the filtration material by a combination of advection and

dispersion transport processes. The modeling of phosphorus adsorption by the functional-

ized zeolite adsorbent will help to estimate the equilibrium coefficient and investigate

the design factors. Also, the linear adsorption isotherm which is based on the local

mass equilibrium at the fluid-solid interface is used to model the phosphorus capturing

mechanism. As discussed in Chapters 3 and 4, the proposed volume-averaged models

take into account the above-mentioned physics and are able to predict the macroscopic

concentration of the tracer species in the macroscopic region. A synopsis of the action

steps taken to implement the upscaled models is given below:

1. The momentum equations applicable at the microscale are solved in a chosen REV

Figure 5.5: The micro-tomographic images of functionalized zeolite material in the (a) X-Y
plane, (b) Y-Z plane, and (c) X-Z plane.
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with suitable boundary conditions.

2. The resulting velocity field is used to compute the solutions for the closure problems

I and II, as given in Eqs. (4.21a-4.21d) and (4.22a-4.22d) respectively.

3. The resulting closure fields for bβ and sβ are used to evaluate the effective transfer

coefficients uβ and D∗β, as given in Eqs. (4.24) and (4.25) respectively.

4. The upscaled equations (4.23) and (4.27) incorporating the effective coefficients are

solved in one-dimensional space (a line) to predict the intrinsic average concentration

in the macroscale model.

It is important to note that the equilibrium coefficient Keq, as used in Eqs. (4.23)

and (4.27), is required for modeling the upscaled models. The general procedure to find

Keq is detailed in Appendix C.1.1. Based on the experimental results obtained from the

batch adsorption tests, the Kd value for functionalized zeolite at the concentration of 50

mg/L was found to be 0.20 L/g. The average surface area of the adsorbent was noted

to be 3.28 m2/g in a previous study. Hence, the Keq value for this adsorbent was found

by calculating the ratio of Kd and the surface area of the adsorbent. It was evaluated to

be 5.99 × 10−5 m. The volumetric porosity εβ of the zeolite material was calculated as

follows. DI water was gradually poured out from a 100 mL filled graduated cylinder into

another 100 mL graduated cylinder completely filled with zeolite material. The bottom

of the meniscus line for water in the zeolite filled cylinder should be exactly level with

the top graduation corresponding to the 100 mL mark. At this point, we measure the

amount of water that was poured into the zeolite filled column to get the volumetric

porosity. The porosity was determined to be 49.6%. Apart from Keq and εβ, the models

also require the molecular diffusivity Dβ of soluble reactive phophorus (SRP). Hence, Dβ

of SRP was adopted from Table 1 of an experimental study in ref. [183] and taken to be

6.20× 10−6 cm2/s.
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Figure 5.6: The image processing on the 2-D micrograph was done in COMSOL Multiphysics.
Here, (a) shows adjustment of the contour thresholding level (marked by green lines) where
the particles were separated from the dark grey background, (b) is the 2-D micrograph with
chosen REV (shown by black rectangular box), (c) shows the sharpening of edges to separate
the solid and void regions in the micrograph (marked by green color closed curves) based on
pre-set assumptions, and (d) the solid particle matrix inside the chosen REV.

5.3.1 REV preparation

The use of porous unit cells which have a simple structure can still provide reasonable

qualitative information regarding the transport phenomena that occurs at the pore-

scale. However, it is better to compare the experimental findings with the predictions

obtained from unit cells which are closely representative of the real-world porous samples.

Therefore, in this study, we take into account unit cells whose structure is generated from

the micro-CT scans of functionalized zeolite. In Fig. 5.5, we see the micro-tomographic

images of zeolite material in the (a) X-Y, (b) Y-Z, and (c) X-Z planes at micron-scale

resolution. The characteristic size of the adsorbent particles was 0.72 mm, as provided

by the manufacturer.
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The grayscale image corresponding to the X-Y plane, as shown in Fig. 5.5a, was

converted into a binary image by performing a sequence of image processing steps in order

to make it suitable for computational purposes. Here, the irregular-shaped particles in

light grey color with brighter (shinier) boundaries were considered to be closer to the top of

the micrograph, whereas the particles with darker (less shinier) boundaries were assumed

to situated deeper into the plane or farther away from the surface of the micrograph.

Thus, if a cross flow were to occur, the particles with brighter boundaries would act as

the obstacles, whereas the particles with relatively dark edges would be treated as pores.

Also, the dark grey color background behind the particles was invariably treated as the

void space or pore space. Based on this hypothesis, the image processing capabilities

of the CFD software COMSOL Multiphysics were used to alter the thresholding levels

of the 2-D micrograph in order to distinguish between the solid and pore regions. The

geometrical regions in the micrograph where these treatments were done are illustrated

in Fig. 5.6.

The application of the volume averaging method involves setting up of a unit-cell

which captures sufficient microstructural details of the actual porous medium and can

be used for solving the closure problems. For this, a rectangular cross-section, as shown

in Fig. 5.6b, was extracted from the micrograph and chosen to be the representative

elementary volume (REV) for computational analysis. The size of the REV should

follow the constraint given in Eq. (3.1). Hence, in accordance with the aforementioned

constraint, we chose the length of the unit-cell l to be almost 5 times the characteristic

size of the particles lσ. It is important to remark here that finding a suitable REV size

for a porous medium still remains a subject that is actively researched in the volume

averaging community [184,185]. Next, a 2-D model containing only the void region (i.e.,

an REV which is devoid of solid particles) was constructed by performing a sequence

of boolean operations in COMSOL. Finally, the areal porosity of the developed unit-cell

was estimated by finding the ratio of pore area (void region) (see Fig. 5.7a) to the total
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Figure 5.7: (a) The mesh model corresponding to the pore region of the REV, and (b) an
example of fine mesh discretization near the fluid-solid interface (the blue color curves denote
mesh elements of very small size along the fluid-solid interface).

area of the chosen REV. This important parameter was calculated to be 52.2%, which is

close to the volumetric porosity of 49.6% for the functionalized zeolite material.

5.3.2 Numerical simulations

The computational domain for fluid flow, i.e. the pore region in the REV, was discretized

using COMSOL’s mesh generator with triangular elements. In order to evaluate the

influence of mesh refinement on the solutions, the model was discretized with three

meshes, namely: (a) coarse, (b) normal, and (c) fine, while the relative tolerance was

tightly set to 10−3. The fine mesh with 377893 triangular, 16615 edge, and 3093 vertex

elements was assessed to give accurately converged results, and was thus employed for the

numerical simulations. Also, the meshes were especially finely discretized near the fluid-

solid interface, as shown in Fig. 5.7b, to accurately resolve the sharp gradients occurring

in both the velocity and closure variable fields.

As previously mentioned, the momentum equations applicable at the microscale are

solved in the REV with suitable boundary conditions. Here, the Stokes-flow equation

(Eq. (4.3)) is solved in the pore region of the REV and the no-slip boundary condition

(Eq. (4.5)) is applied at the β−σ interface, i.e. the fluid-solid interface. It must be noted
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Table 5.2: Parameters used in the numerical simulations of the closure problems and calculation
of dimensionless numbers.

Parameter Notation Value
Density ρβ 1000 kg/m3

Viscosity µβ 0.001 Pa·s
Pore velocity ||〈vβ〉β|| 3.06× 10−4 m/s
Molecular diffusion coefficient of SRP Dβ 6.2× 10−6 cm2/s
Specific interfacial area of the REV aβσ 3928 m−1

Linear equilibrium partitioning coefficient Kd 0.20 L/g
Equilibrium coefficient for the linear isotherm Keq 5.99× 10−5 m
Dimensionless adsorption isotherm A (= Keq aβσ/εβ) 0.45

Porosity (from REV in the micrograph) εβ 52.2%
Particle length lσ 0.72 mm
Hydraulic diameter lβ (= 4εβ/aβσ) 0.53 mm
Unit-cell (REV) l 3.25 mm
Macroscale model L 85.3 mm

that the particle Reynolds number Rep [153], which is given by

Rep =
ρβ ||〈vβ〉β|| lσ

µβ
· εβ
1− εβ

, (5.2)

must be smaller than 1 for the creeping-flow motion. Under the given experimental

conditions (see Table 5.2), Rep was found to be 0.24, which satisfies the aforementioned

constraint.

Next, the computed velocity field is used in solving the closure problems I and II, as

Figure 5.8: (a) The convection-diffusion based governing differential equations were solved
in the pore region of the REV (blue color region), and (b) and (c) the periodicity boundary
conditions were applied on the opposite edges of the unit-cell (blue color edges).
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given in Eqs. (4.21a-4.21d) and (4.22a-4.22d) respectively. For the closure problems, the

convection-diffusion based governing differential equations (Eqs. (4.21a) and (4.22a)) are

solved in the pore region or the fluid domain of the REV, as shown in Fig. 5.8a. Note

that the periodicity boundary condition cannot be directly implemented in the original

porous medium due to the random distribution of the particles. However, Whitaker [82]

suggested that in such cases the use of a periodic unit-cell is admissible, and the resulting

errors which are confined to the borders of the unit-cell are not significant. Hence, the

periodicity boundary conditions (Eqs. (4.21c) and (4.22c)) are imposed on the opposite

edges of the 2-D periodic unit-cell, as illustrated in Figs. 5.8b and 5.8c.

The next step involves computation of the effective transfer coefficients uβ and D∗β.

This step is completed by using the resultant closure fields for bβ and sβ in Eqs. (4.24)

and (4.25) for evaluating uβ and D∗β, respectively.

Finally, the effective transfer coefficients, which establish the micro-macro coupling

between the pore-scale and macroscale models, are substituted in the upscaled equations.

The volume-averaged equations (4.23) and (4.27) are solved in a 1-D domain corresponding

to the height of the zeolite material filled burette in the column-flow experiment. This

is basically the length of the macroscale model L in Table 5.2. All the parameters used

in the numerical simulations of the closure problems and macroscale models are listed in

Table 5.2.

5.4 Results and discussion

The experimental data plotted in Fig. 5.9 shows the average P values (curve with black

solid circles) with 95% confidence interval (shown by blue shaded region around the

average P curve). It also shows the experimental data obtained from the three trials

of the column experiment. The two-tailed t-test statistical analysis performed on the

experimental data helped in accounting for the variations due to an ensemble of random

errors that might have occurred during the experiments (refer to Appendix E for more
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Figure 5.9: The average concentration data for the effluent recorded from the column-flow
experiments and concentration predictions from the volume-averaged models, VAMs and VAMc.

details). As shown in Fig. 5.9, the functionalized zeolite was successfully able to remove

the majority of phosphorus from the influent for nearly 200 minutes. After this, the

number of vacant (or active) adsorption sites in the (previously used) filtration material

may have started to decline, which explains the reduction in removal efficiency post 200

minutes. Near the end of 480 minutes, the effluent concentration rose to around 15 mg/L.

Next, we observe that the effluent concentration predictions from the volume-averaged

models (VAMs and VAMc) show a large difference when compared to the experimental

results. This observation undoubtedly raises the question in our mind– are the proposed

volume-averaged models incapable of explaining the experimental results? Not exactly.

Let us have a closer look at the concentration curves obtained from the upscaled models

in Fig. 5.10.

In Fig. 5.10, the blue and red color curves represent VAMc and VAMs, respectively.
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First, it is important to note that the shape of these convection-dispersion equation-

based curves is in accordance with those observed in other adsorption studies [13,14,175].

Second, based on the parameters involved in the experiments and numerical simulations

(see Table 5.2), we calculate the values of Pep (given in Eq. (4.57)), and the effective

transfer coefficients uβ and D∗∗β
(
= D∗β/Dβ

)
. For Pep = 388, the value of uβ = 20.2 and

D∗∗β = 598. These estimates are in-line with the plots of the effective transfer values

plotted in Fig. 4.6. It means that, for a given porosity, with an increase in Pep (here

Pep between 100 and 1000), the values of uβ and D∗∗β also increase by one or two orders

of magnitude. Thus, the numerical simulations based on the upscaled models were able

to provide realistic estimates of uβ and D∗∗β . Finally, even though the VAMc and VAMs

curves remain close to each other, they are still distinguishable, which suggests that

VAMc does provide some improvement over VAMs in this case. This can be explained

based on the restraint given in Eq. (3.88), where the LHS of Eq. (3.88) is evaluated to

be 0.2 and the RHS is 1.45. For the case under study, the term on the LHS does not

remain very small or negligible with respect to the RHS of Eq. (3.88), hence, a marginal,

yet observable, difference can be noted in the predictions from both the models.

Now, we must explore and throw light on the reasons behind the discrepancy observed

between the experimental results and VAM predictions. We have identified four possible

reasons which can help explain this inconsistence: (1) the lack of adherence to the time-

scale constraints, (2) the absence of heterogeneous reaction physics in model development,

(3) the simplification of the unit-cell (Fig. 5.8a) used to compute the velocity and closure

variable fields, and (4) the inhomogeneity in the functionalized zeolite material properties.

These are each explained in the subsequent paragraphs.

The volume averaging method models are strongly based on the development and

implementation of length- and time-scale constraints, as has been described in Chapters 3

and 4. In this study, the length scales corresponding to the particle, REV, and macromodel

adhere to the length-scale hierarchy proposed in Eq. (3.1). However, what is not directly

133



www.manaraa.com

Figure 5.10: A closer view of the effluent concentration predictions obtained from the volume-
averaged models, VAMs and VAMc.

evident is the effect of time-scale constraints given in Eqs. (3.52) and (3.54), which need

to be satisfied in order to make the governing equations at the closure level to be almost

quasi-steady. According to the length scales used in this study, the hydraulic diameter lβ

can be calculated using the relation [124]

lβ = 4
εβ
aβσ

. (5.3)

Here lβ = 0.53 mm, and it is representative of the the width of the channel between the

particles of the porous medium. If we consider the constraint given in Eq. (3.24), the

length-scale for spatial fluctuations in c̃β can be taken to be the same as lβ. Thus, on

using the values of lβ and Dβ in the constraint given in Eq. (3.52), we get

τ >> 453 , (5.4)
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where τ (in s) is the characteristic time taken to note changes in c̃β within the REV. This

condition is difficult to satisfy since the microscale diffusion time-scale
(
=

l2β
Dβ

)
involved

in this study is quite large. In other words [186], it means that one must wait for much

more than 453 s before the closure solution becomes quasi-steady, which is impractical.

Hence, adhering to this constraint is unfeasible under the given length scales. Similarly,

the constraint in Eq. (3.54) yields

τ >> 51 . (5.5)

Therefore, Eq. (5.5) is open to a similar interpretation, as previously discussed. As

pointed out by Whitaker (see Chapter 3 in [82]), such constraints, as given in Eq. (3.52),

are not always adhered to in typical laboratory experiments. Hence, in such multiscale

analysis, it would be interesting to formulate the set of unsteady closure problems in order

to interpret the observations from the laboratory experiments. Although these problems

have been researched [187], such analysis would require substantial computational effort

which is beyond the scope of the present work. (A lab scale filtration experiment was

also performed in addition to the column-flow experiments. However, similar to the

column-flow experiments, a large discrepancy was noted between the predictions from

the upscaled models and experimental results. For more details related to this filtration

experiment, refer to Appendix E.2.)

Another route to test the effectiveness of the upscaled models would be exploring the

possibility of conducting experiments with porous adsorbents which have smaller length

scales associated with them, typically of the order of microns, as seen in the case of

polyurethane foam-based heavy metal adsorbents. In this case, the diffusion time-scale

associated with the solid particles would be smaller and therefore the time-scale constraint

(Eq. (3.52)) would be easier to satisfy for the laboratory experiments.

Next, the discrepancy between the experiments and VAM also indicates that our

model is perhaps incomplete. In order to develop a more accurate representation of

the transport phenomena taking place at the microscale, we should also explicitly take
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into consideration the possibility of heterogeneous reaction occurring on the fluid-solid

interface. A lot of research on this subject has been done in the volume averaging

community [117,124,125]. This addition would result in accounting for any mass transfer

loss that might occur during the experiments.

Further, the use of a 3-D unit-cell of reasonable size, constructed out of a series of

micro-CT scans, would be more suitable for numerical simulations. This is because such

models would more accurately capture the intricate network of interconnected channels

or pores within the porous material. Since the geometry of the system is of prime

importance, this effort would help in obtaining accurate values of the effective transfer

coefficients used in the upscaled models.

Another suggestion which would help increase the accuracy of the concentration

predictions from REVs is to create unit cells of different sizes and extract them from

random locations in the micro-tomographic images of all the planes. This technique

would take into account the microstructural variations present across the porous domain

and provide an accurate averaged data for use in the upscaled models.

Although the primary reason behind the lack of agreement between theory and observ-

ations is related to the time-scale constraints, as described above, the large error band

around the mean curve (see Fig. 5.9) requires some explanation as well. The filtration

material used this study was taken from a bag which was previously employed in a pilot

scale filtration study. Hence, this material was neither freshly prepared nor regenerated

using wash fluids prior to being used in the column-flow experiments. Although the

material still had a good adsorption capacity, as was evaluated at the end of the previous

filtration study, there is a strong possibility that the physical and chemical properties

of the particles might have altered. This is based on the fact that the material in the

bag was non-uniformly exposed to influents in the previous study. Basically, this could

have resulted in inhomogeneity in the physiochemical properties of the material, which

directly affected the adsorption capacity and led to a large scatter in the column-flow
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experiments. Hence, in future studies, it would be advisable to use adsorption material

which is freshly prepared and clean to reduce any inhomogeneity that might creep into

the material properties.

5.5 Conclusions

In this chapter, we investigated the application of VAM models put forward by Pillai and

Raizada [138] in order to seek a comparison between theory and experimental observations.

Three trials of column-flow experiment were conducted using an adsorbent made up of

functionalized zeolite material to remove phosphorus from synthetically prepared high-

concentration phosphorus solution. The adsorption capacity qe of the material was noted

to be 5.0±0.5 mg/g and the equilibrium concentration of the sorbent Ce was determined

to be 25.5 ± 2.3 mg/L for the influent concentration of 49.9 ± 1.9 mg/L. Micro-CT

scans of zeolite material were taken to develop REVs which were representative of the

microstructure of the actual adsorbent medium. Unit cells with pore (or fluid) region were

constructed after image processing in COMSOL Multiphysics. The Stokes flow equation

was solved in the unit-cell, followed by the closure problems. Next, the effective transfer

coefficients were obtained on using the closure variable fields in Eqs. (4.24) and (4.25).

Finally, the effective transfer coefficients were substituted in the upscaled models (VAMs

and VAMc), and both the models were solved in a 1-D domain.

The concentration predictions from the upscaled models were observed to be quite

different from the experimental results. However, the upscaled models were found to

give realistic effective coefficient values, and VAMc was noted to offer some improvement

over VAMs. After theoretical and numerical investigations, four reasons were presented

to explain the discrepancy between theory and observations. The primary reason was

considered to be the lack of adherence to the time-scale constraints given in Eqs. (3.52)

and (3.54). The characteristic time to achieve quasi-steady state solution for closure

problems was found to be very large when compared to the diffusion time-scale related to
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the zeolite particles. This highlighted the importance of length- and time-scale constraints

involved during the development of the volume-averaged models. An alternative was

suggested, where unsteady closure problems should be developed along with new upscaled

models for explaining such laboratory experiments. The possiblity of including the

physics for heterogeneous reaction in the upscaled models was highlighted. Also, the

functionalized zeolite material used in the experiments was assessed to have inhomogeneity

associated with it due to its prior use in another field scale experiment. This caused a

large scatter in the column-flow experiment results. Different suggestions pertaining to

the volume-averaged models and experiments were presented in order to improve the

accuracy of VAM and to avoid the encountered pitfalls in future experiments.
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Appendices
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APPENDIX A

Permeability Measurement in Three Dimensions

A.1 Effective permeability in three dimensions

Effective permeability, Keff , can be defined as the permeability measured along a chosen

flow direction that is imposed on the fabric. In a laboratory coordinate system (x y z),

the Darcy velocities can be expanded in terms of the permeability tensor components,

Kij with (i, j) ∈ (x, y, z), as follows:

vx = −Kxx

µ

∂P

∂x
− Kxy

µ

∂P

∂y
− Kxz

µ

∂P

∂z

vy = −Kxy

µ

∂P

∂x
− Kyy

µ

∂P

∂y
− Kyz

µ

∂P

∂z
(A.1)

vz = −Kxz

µ

∂P

∂x
− Kyz

µ

∂P

∂y
− Kzz

µ

∂P

∂z

where vx , vy , and vz are the x- , y- , and z-components of the Darcy velocity, respectively,

and µ is the fluid viscosity. In the present study, we assume the fluid to flow along the

x-axis direction, which in conjunction with suitable channel flow approximations (i.e.,

vy = 0 and vz = 0 in this case) in Eq. (A.1) leads to the following transformed effective

permeability expression [19]:

Keff =
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KyyKzz −K2
yz

. (A.2)
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Figure A.1: The various measurement directions in the laboratory frame of reference considered
for 1-D channel flow experiments to obtain the 3-D permeability tensor. The magnitude of angle
ζ is 45◦.

A.2 Direction of permeability measurement

Weitzenböck et al. [19] explained the need for six different experimental orientations

in order to calculate the permeability tensor for a 3-D specimen. These measurement

directions, as presented in Fig. A.1, need to be unique such that no more than three

measurements must be made in the same plane to obtain useful permeability data.

As aforementioned, the specimen could be located using the laboratory coordinate

system (x y z) where the effective permeability for unidirectional flow occurring through

this sample along the x-axis is given by Eq. (A.2). Further, the remaining five channel

flow experiments are performed along the directions shown in Fig. A.1. In each of these

five cases, the new permeability tensor components need to be related to those in the first

configuration, and this is achieved through the ordered passive rotation(s) of the original

permeability matrix such that it finally aligns with the new measurement direction. These

rotational transformations of the tensor components are accomplished by exercising the

relation

K ′ = RKRT (A.3)
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where K ′ is the rotated permeability tensor, K is the original permeability tensor, and R

is the total rotation matrix whose transpose is RT . (Refer to Section A.6 for more details

about the total rotation matrix, R.) It is important to note that the measurements for

all the three in-plane diagonal directions, i.e., II, IV , and V I in Fig. A.1, are performed

at an angle ζ (= 45◦).

The first effective permeability value for flow along the x-axis is same as Eq. (A.2),

i.e.,

KI =
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KyyKzz −K2
yz

. (A.4)

For obtaining the second effective permeability value, the experiment is performed in

the same laboratory reference frame but rotated about the z-axis by angle ζ in order to

coincide with direction II. The resultant rotation matrix R (equal to rotation matrix A

in Section A.6 in this case) when substituted in Eq. (A.3) leads to the following rotated

tensor components:

K ′xx =
Kxx +Kyy

2
+Kxy

K ′xy =
−Kxx +Kyy

2

K ′yy =
Kxx +Kyy

2
−Kxy (A.5)

K ′zz = Kzz

K ′yz =
−Kxz +Kyz√

2

K ′xz =
Kxz +Kyz√

2
.

These new tensor components, when substituted in Eq. (A.2), result in the following

expression for effective permeability, KII :

KII = 2
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KxxKzz − 2KxyKzz +KyyKzz −K2
xz + 2KxzKyz −K2

yz

. (A.6)
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Next, KIII is obtained by rotating the measurement direction about the z-axis by 90◦

such that it aligns with the y-axis in the laboratory coordinate system, as illustrated in

Fig. A.1. After completing a similar sequence of steps as exercised for deriving KII , the

effective permeability, KIII , takes the form

KIII =
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KxxKzz −K2
xz

. (A.7)

As previously discussed, after conducting three measurements in the x-y plane, one needs

to explore the out-of-plane measurements to determine the remaining three effective

permeabilities. We attempt this by making the fourth measurement in the y-z plane

after successive rotations of the measurement direction, first about the z-axis by 90◦ and

then about the x-axis by angle ζ (= 45◦). In this case, the total rotation matrix modifies

to R = AC and the effective permeability, KIV , is given by

KIV = 2
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KxxKyy − 2KxxKyz +KxxKzz −K2
xy + 2KxyKxz −K2

xz

. (A.8)

The effective permeability, KV , is computed by rotating the measurement direction about

the y-axis by −90◦ such that it becomes parallel to the z-axis in the laboratory frame

of reference. The total rotation matrix simplifies to R = B in this case. This step is

different to the one proposed by Weitzenböck et al. [19] where the measurement direction

is rotated by 90◦ about the y-axis; however, the effective permeability expression for KV

comes out to be the same from both the approaches as follows:

KV =
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KxxKyy −K2
xy

. (A.9)

Finally, the effective permeability expression forKV I is formulated by rotating the measu-

rement direction about the y-axis by −45◦ in order to match direction V I shown in

Fig. A.1. Again, it is important to highlight that Weitzenböck et al. [19] proposed a
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rotation of 45◦ about the y-axis for this step, which incorrectly causes the measurement

direction to end up in the negative x-z plane, 45◦ below the x-axis. Thus, the resulting

difference can be noted between the denominators of the permeability expressions obtained

for KV I from the present approach (in Eq. (A.10)) and from Weitzenböck et al.’s [19]

method (in Eq. (A.11)).

KV I = 2
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KxxKyy − 2KyyKxz +KyyKzz −K2
xy + 2KxyKyz −K2

yz

(A.10)

KV I = 2
KxxKyyKzz + 2KxyKyzKxz −KxxK

2
yz −KyyK

2
xz −KzzK

2
xy

KxxKyy + 2KyyKxz +KyyKzz −K2
xy − 2KxyKyz −K2

yz

. (A.11)

Hence, the permeability estimation method proposed by Weitzenböck et al. [19] needs

modification in terms of (a) correcting the formula of the effective permeability KV I , and

(b) correcting the derivation of the formula of the effective permeability KV , because of

the incorrect rotation matrices involved in these cases.

A.3 Principal permeability in three dimensions

As suggested in [19], two steps are involved in calculating the principal permeability. First,

the permeability tensor components are formulated in terms of the effective permeabilities

given in Eqs. (A.4,A.6-A.10), and second, the principal components are computed using

the standard eigenvalue and eigenvector operations on the permeability matrix. The

permeability tensor component expressions obtained after accomplishing the first step

are listed below:

Kxx = (K2
IIIK

2
IV − 4K2

IIIKIVKV − 4KIIIKIVK
2
V − 2KIIIK

2
IVKV

+4K2
IIIK

2
V +K2

IVK
2
V )

(K2
IK

2
IIK

2
V I)

2C
(A.12)
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Kyy = (K2
IK

2
V I − 4K2

IKVKV I − 4KIK
2
VKV I − 2KIKVK

2
V I

+4K2
IK

2
V +K2

VK
2
V I)

(K2
IIK

2
IIIK

2
IV )

2C
(A.13)

Kzz = (K2
IK

2
II − 4K2

IKIIKIII − 4KIKIIK
2
III − 2KIK

2
IIKIII

+4K2
IK

2
III +K2

IIK
2
III)

(K2
IVK

2
VK

2
V I)

2C
(A.14)

Kxy = (2KIKIIKIIIKIVKV −KIKIIKIIIKIVKV I − 4KIKIIKIIIK
2
V

+2KIKIIKIIIKVKV I + 2KIKIIKIVK
2
V − 3KIKIIKIVKVKV I

+4KIKIIIKIVKVKV I − 3KIIKIIIKIVKVKV I + 2KIIKIIIK
2
VKV I

−KIIKIVK
2
VKV I)

(KIKIIKIIIKIVKV I)

2C
(A.15)

Kyz = (2KIKIIIKIVKVKV I −KIIKIIIKIVKVKV I − 4K2
IKIIIKIVKV

+2KIKIIKIIIKIVKV + 2K2
IKIIIKIVKV I − 3KIKIIKIIIKIVKV I

+4KIKIIKIIIKVKV I − 3KIKIIKIVKVKV I + 2K2
IKIIKIVKV

−K2
IKIIKIVKV I)

(KIIKIIIKIVKVKV I)

2C
(A.16)

Kxz = (2KIKIIKIIIKVKV I −KIKIIKIVKVKV I − 4KIK
2
IIIKVKV I

+2KIKIIIKIVKVKV I + 2KIIK
2
IIIKVKV I − 3KIKIIKIIIKIVKV I

+4KIKIIKIIIKIVKV − 3KIIKIIIKIVKVKV I + 2KIK
2
IIIKIVKV I

−KIIK
2
IIIKIVKV I)

(KIKIIKIVKVKV I)

2C
(A.17)
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where

C = K2
IIK

2
IIIK

2
IVKVK

2
V I −K2

IIK
2
IIIKIVK

2
VK

2
V I +K2

IIKIIIK
2
IVK

2
VK

2
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+K2
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2
IIKIIIK

2
IVK

2
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2
IIKIIIKIVK

2
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2
IIKIIIKIVKVK

2
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2
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2
IVK

2
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2
IIK

2
IVKVK

2
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2
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2
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2
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2
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2
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2
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2
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2
VKV I − 3KIK

2
IIK

2
IIIKIVKVK

2
V I

+2KIK
2
IIK

2
IIIK

2
VK

2
V I − 3KIK
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V I −KIKIIKIIIK
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2
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2
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Note that the expressions given for tensor components in Eqs. (A.12-A.17) are different

from that in Appendix B of [19].

A.4 Results and discussion

A.4.1 Initial validation of the permeability estimation method

For validating the permeability estimation approach adopted in this study and estimating

its accuracy, we refer to the principal permeability example published by Woerdeman

et al. [20]. The validation process involves the following steps: first, calculate the
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Table A.1: The permeability tensor example from Table 1 of [20].

Principal Permeability, cm2 Rotation Angle, radians
K1 = 7.51× 10−7 Θ1 = 0.3

K2 = 4.58× 10−7 Θ2 = 1.0× 10−3

K3 = 1.0× 10−7 Θ3 = 1.2

initial values for the tensor components by substituting the principal permeability values

from Table 1 of [20] into Eqs. (A.21-A.26); second, substitute these calculated tensor

components into Eqs. (A.4,A.6-A.10) to find the effective permeabilities, KI to KV I ;

third, again compute the tensor components, but this time by substituting the obtained

effective permeability values into Eqs. (A.12-A.17); fourth, compare the tensor compone-

nts obtained through the two different approaches involved in the first and third steps;

and finally, determine the principal permeability values using the standard operations

for finding eigenvalues of the permeability matrix, and compare them with the data of

the example given in [20].

Table A.1 presents the permeability example used by Woerdeman et al. [20] to validate

their permeability estimation method. Next, the tensor components computed using

Eqs. (A.21-A.26) and the directional permeabilities obtained from Eqs. (A.4,A.6-A.10)

are tabulated in Table A.2. For the purpose of comparison, this table also includes the

effective permeability data calculated by Weitzenböck et al. (given in Table 2 of [19]).

As expected, the effective permeabilities KI to KV match with Weitzenböck et al.’s [19]

results. However, a clear deviation can be noted in the value of KV I . This difference

can be directly explained based on the contrast between the expressions derived for KV I

using both the methods (see Eqs. (A.10) and (A.11) in Section A.2).

The tensor components calculated after substituting the effective pemeabilities in Eqs.

(A.12-A.17) and the resultant principal permeability values are reported in Table A.3.

The tensor component values presented in Table A.3 can be seen to be in excellent

agreement with those in Table A.2. Also, the computed principal permeabilities are
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identical to those proposed in Woerdeman et al.’s [20] example in Table A.1. Therefore, we

conclude that the derivation of the modified permeability tensor component expressions

given in Eqs. (A.12-A.17) is correct.

A.4.2 Calculating permeability of a test sample

A numerical study is performed to visualize the difference betweenWeitzenböck et al.’s [19]

and the current permeability calculation approach. In this study, the permeability is

estimated for an artificial geometry featuring an inclined bank of equally-spaced parallel

fibers, as illustrated by the grey colored rods in Fig. A.2. The model represents a sample

volume comprising several infinitely long cylindrical fibers of radius 100 µm arranged at

a regular distance from each other while being inclined at 45◦ to the x-axis in the x-z

plane (see Figs. A.2b and A.2c).

Before carrying out the numerical simulations, the following important observations in

the permeability values are anticipated based on the symmetries immanent in the model:

first, the permeability tensor components should be equal for fluid flow along the x- and

z-axis (i.e., Kxx = Kzz); second, the off-diagonal permeability components, Kxy and Kyz ,

should be equal; and finally, since the fibers are only inclined in the x-z plane, greater

fluid flow should ensue along the axial direction of the fibers in this plane, and therefore,

Kxz should be positive and greater than both Kxy and Kyz .

This numerical study was conducted using the commercial FEM solver, COMSOL

Table A.2: Permeability values calculated using the data in Table A.1 (in 10−11 m2).

Tensor Effective Permeability Effective Permeability
Components (present work) (Weitzenböck et al. [19])
Kxx = 4.69 KI = 3.76 KI = 3.75

Kyy = 7.08 KII = 3.82 KII = 3.82

Kzz = 1.31 KIII = 6.52 KIII = 6.52

Kxy = −1.10 KIV = 1.61 KIV = 1.60

Kyz = −0.37 KV = 1.07 KV = 1.07

Kxz = −0.94 KV I = 1.24 KV I = 2.54
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Figure A.2: Test model featuring a bank of equally-spaced parallel fibers inclined only in the
x-z plane. (a) Isometric view of the model in the right-handed coordinate system (xyz). (b) x-y
view of the model. (c) x-z view of the model where the fibers can be noted to be aligned at 45◦

to the x-axis in the x-z plane.

Multiphysics. A mesh independence study was performed for each orientation case, based

on three different mesh sizes: coarse, normal, and fine. The solution corresponding to the

maximum mesh refinement (i.e., the fine mesh) was considered as the reference and the

relative differences in the effective permeability values were used as the convergence-test

criteria. The relative error was found to be less than 1% for all the studied cases, thus

confirming the mesh independence of our results. Subsequently, the fine mesh was used

for numerical analysis.

After conducting unidirectional flow simulations along six different orientations, as

shown in Fig. A.1, the permeability tensor results were obtained from the present approach
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Table A.3: Permeability tensor components and Principal permeability calculated using data
in Table A.2 (in 10−11 m2).

Tensor Components Principal Permeability
Kxx = 4.69 K1 = 7.51

Kyy = 7.08 K2 = 4.58

Kzz = 1.31 K3 = 1.0

Kxy = −1.10

Kyz = −0.37

Kxz = −0.94

by using Eqs. (A.12-A.17), and from Weitzenböck et al.’s method by employing the

expressions given in Appendix B of [19]. The results are reported in Table A.4. Note

that the tensor values obtained from both the approaches are different, which is expected

due to the involvement of different tensor component expressions; however, they clearly

displayed the aforementioned observations. The tensor components Kxx and Kzz were

found to be equal. Similarly, the values for the off-diagonal terms, Kxy and Kyz ,

were noted to be very close. Further, the maximum permeability is reported for the

tensor component Kyy from both the methods. However, more importantly, the tensor

component Kxz showed a significant difference in its results. The present approach

produced a positive value for Kxz which was greater than both Kxy and Kyz ; however,

Weitzenböck et al.’s [19] approach led to a negative value for this tensor component.

This noticeable difference is further explained on the basis of the following example where

Table A.4: Permeability tensor results for the fiber model (in 10−8 m2).

Tensor components obtained from
Present approach Weitzenböck et al. [19] approach
Kxx = 8.58 Kxx = 8.36

Kyy = 10.69 Kyy = 10.42

Kzz = 8.58 Kzz = 8.37

Kxy = 1.71 Kxy = 0.74

Kyz = 1.70 Kyz = 0.74

Kxz = 3.45 Kxz = −3.13
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Figure A.3: A cube model encompassing segments of the inclined fibers in Fig. A.2. (a)
Boundary conditions applied across the faces of the cube in the x- and z-axis directions, where
Pin indicates pressure inlet face and Pout indicates pressure outlet face. (b) A sample x-z plane
featuring flow streamlines denoted by black arrows. The streamlines are majorly aligned along
the axial direction of the fibers (denoted by white spaces). (c) Isometric view of the cube model
illustrating multiple slices of the x-z planes. The streamlines can be noted to be confined only
in the x-z planes and not divert out-of plane.

the application of appropriate boundary conditions leads to the simplification of a three-

dimensional flow into a two-dimensional one.

Let us consider a cubical geometry, as shown in Fig. A.3, which incorporates the

set of inclined fibers used in the model of Fig. A.2. Then, the application of negative

pressure gradients across the faces directed towards the x- and z-axis (see Fig. A.3a), and

symmetry boundary condition across the faces along the y-axis of the cube, leads to a

two-dimensional flow in three-dimensional space. This is confirmed by the characteristic

streamlines depicted by black arrows in Fig. A.3b, which only traverse in the x-z planes

along the axial direction of the fibers at 45◦ with respect to the x-axis. Since the pressure
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gradient directions in this simplified model match with those involved in the calculations

of KI and KV , and the resulting flow is happening along the axial direction of the fibers

in the x-z plane, we conclude that the outcome of the permeability estimation approach

should result in a positive value for the tensor component Kxz for the model of Fig. A.2.

This confirms the correctness of our approach vis-à-vis that of Weitzenböck et al.’s [19].

A.5 Conclusions

In this appendix, we report the modifications required in Weitzenböck et al.’s [19] method

for correctly estimating the permeability in three-dimensional porous media. The permea-

bility measurement approach was thoroughly discussed in a fashion similar to the one

presented in [19] to facilitate a comparison between the original and modified methods.

The theoretical errors involved during the derivation of effective permeability expressi-

ons for KV and KV I were highlighted. These perceptible errors occur due to the incorrect

rotation angle(s) linked with these two cases. In the case of derivation of KV , the

measurement direction needs to be rotated about the y-axis by −90◦ instead of the

originally proposed rotation of 90◦, whereas for KV I , the rotation angle should be set to

−45◦ about the y-axis in place of 45◦, as mentioned in [19]. This causes the expressions

for the permeability components to be modified.

The validation of the modified permeability estimation approach was successfully

carried out in a manner similar to the one given in [19] for the original method. To further

elucidate the difference between the two approaches, a numerical study was conducted

to estimate the permeability tensor of an artificial geometry created by an inclined bank

of parallel fibers in three-dimensional space. Based on the inherent symmetries present

in this model, certain key observations about the permeability tensor components were

hypothesized. In contrast to the original approach, the results obtained from the new

method were found to support the proposed hypotheses, thus establishing confidence in

the recommended modifications.
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A.6 Euler Angles and Tensor Rotation

If a proper Euler angle sequence (ABC) of passive rotations is used to locate the orientation

of an arbitrary body in a laboratory coordinate system (x y z), where matrixA corresponds

to the rotation about the z-axis by angle γ, matrix B is the rotation about the y-axis by

angle β, and matrix C represents the rotation about the x-axis by angle α, such that:

A =


cosγ sinγ 0

−sinγ cosγ 0

0 0 1



B =


cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

 (A.18)

C =


1 0 0

0 cosα sinα

0 −sinα cosα


then the total rotation matrix, R , is a composite of the three rotations and is expressed

as follows [19]:

R = ABC (A.19)
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which leads to

R =


cβ · cγ cα · sγ + sα · sβ · cγ sα · sγ − cα · sβ · cγ

−cβ · sγ cα · cγ − sα · sβ · sγ sα · cγ + cα · sβ · sγ

sβ −sα · cβ cα · cβ

 (A.20)

where c represents the cosine function (e.g., cβ is the cosine value of angle β), and similarly

s represents the sine function.

When the principal permeability tensor is rotated using the rotation matrix, R , it

results in the following tensor component expressions (derived using Eq. (A.3)) [19]:

Kxx = K1 cos
2β cos2γ +K2 (cosα sinγ + sinα sinβ cosγ)2

+K3 (sinα sinγ − cosα sinβ cosγ)2 (A.21)

Kyy = K1 cos
2β sin2γ +K2 (cosα cosγ − sinα sinβ sinγ)2

+K3 (sinα cosγ + cosα sinβ sinγ)2 (A.22)

Kzz = K1 sin
2β +K2 sin

2α cos2β +K3 cos
2α cos2β (A.23)

Kxy = −K1 cos
2β cosγ sinγ +K2 (cosα sinγ + sinα sinβ cosγ)

(cosα cosγ − sinα sinβ sinγ)

+K3 (sinα sinγ − cosα sinβ cosγ)

(sinα cosγ + cosα sinβ sinγ) (A.24)
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Kyz = −K2 (cosα cosγ − sinα sinβ sinγ) sinα cosβ

+K3 (sinα cosγ + cosα sinβ sinγ) cosα cosβ

−K1 sinβ cosβ sinγ (A.25)

Kxz = −K2 (cosα sinγ + sinα sinβ cosγ) sinα cosβ

+K3 (sinα sinγ − cosα sinβ cosγ) cosα cosβ

+K1 sinβ cosβ cosγ (A.26)

where K1, K2 and K3 are the diagonal components of the principal permeability matrix.
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APPENDIX B

Permeability Measurement in Two Dimensions

B.1 2-D permeability estimation using the 1-D channel flow

Here we present the permeability estimation method proposed by Weitzenböck et al. [19]

for two-dimensional flow in porous media. For an anisotropic (thin) preform made of

fabric layers laid in a flat horizontal plane, if the x- and y-axes are not the principal

material directions of the porous medium, then the Darcy’s law reduces to

qx

qy

 = − 1

µ

Kxx Kxy

Kyx Kyy


∂xP∂yP

 . (B.1)

The unidirectional macroscopic flow domain and relevant boundary conditions in such an

anisotropic medium are shown in Fig. B.1.

For long and narrow flow domains1, we can assume that qy = 0. Then it follows from

Eq. (B.1) that the pressure gradient in the y-direction can be expressed as

∂yP = −Kyx

Kyy

∂xP . (B.2)

Eq. (B.1) also yields

qx = −
1

µ
[Kxx∂xP +Kxy∂yP ] . (B.3)

1A previous study has indicated that the molds with high aspect ratio (i.e., length to width ratio)
yield flows that are likely to follow this assumption provided the additional conditions pertaining to the
anisotropy ratio (i.e., the ratio of the major and minor permeabilities) and the permeability orientation
(i.e., the angle made by the major axis of the permeability tensor with the x-axis) are satisfied [11].
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Figure B.1: A schematic of a typical macroscopic flow domain and the corresponding boundary
conditions employed for the determination of the permeability tensor for a 2-D (thin) porous
medium.

Substituting Eq. (B.2) in Eq. (B.3) results in

qx = −
1

µ

[
Kxx −

Kyx
2

Kyy

]
∂xP . (B.4)

Now the macroscopic continuity equation states that

∇ · q = 0 (B.5)

which simplifies to

∂xqx = 0 (B.6)

since qy can be assumed to be 0 in the considered flow domain. Substitution of qx

(Eq. (B.4)) in Eq. (B.6) results in the expression

− 1

µ

[
Kxx −

Kyx
2

Kyy

]
∂2P

∂x2
= 0 . (B.7)

The permeability tensor for the assumed homogeneous porous medium can be considered

to be constant, which leads to the simplification

∂2P

∂x2
= 0 . (B.8)

Eq. (B.8) is twice integrated along with the following boundary conditions
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Boundary Condition 1:

P = Pin at x = 0 . (B.9)

Boundary Condition 2:

P = 0 at x = L . (B.10)

which results in a linear distribution of the macroscopic pressure

P (x) = Pin

(
1− x

L

)
. (B.11)

The macroscopic Darcy velocity is obtained by substituting Eq. (B.11) in Eq. (B.4)

qx =
Q

A
= − 1

µ

[
Kxx −

Kyx
2

Kyy

](
−Pin
L

)
. (B.12)

If we compare this with the form of Darcy’s law for isotropic porous media, i.e.,

q = Q
A
= −K

µ
∇P , the effective permeability along the 1-D flow direction can be deduced

to be

Keff = Kxx −
Kyx

2

Kyy

=
µQL

APin
. (B.13)

Let us now assume the principal permeability components to be K1 and K2, and the

principal direction ‘1’ to be at angle ‘θ’ with respect to the x-axis. The 2-D principal

permeability tensor corresponding to the rotated coordinate system is

K =

K1 0

0 K2

 . (B.14)

Using classical manipulations [1], we can express the components of the permeability
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Figure B.2: I, II and III denote the three directions of the 1-D (channel) flow experiment
for the 2-D case. 1 and 2 are the principal directions of the permeability tensor. The angle θ
defines the flow direction vis-à-vis the principal direction 1.

tensor in terms of the principal permeability components as

Kxx = cos2θ ·K1 + sin2θ ·K2 (B.15)

Kyy = cos2θ ·K2 + sin2θ ·K1 (B.16)

Kxy = sinθ · cosθ · (K2 −K1) . (B.17)

On substituting Eqs. (B.15-B.17) in Eq. (B.13), we get

Keff =
K1 ·K2

cos2θ ·K2 + sin2θ ·K1

. (B.18)

According to Weitzenböck et al. [56], three 1-D flow experiments along different

directions (see Fig. B.2) are required to generate three differentKeff values and thus solve

for the three unknowns (K1, K2 and θ) to determine the full in-plane (2-D) permeability

tensor.

The three 1-D flow directions are: θI = θ, θII = θ+ 45◦ and θIII = θ+ 90◦. On using

these angles in Eq. (B.18), the effective permeabilities along the flow directions (KI , KII
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and KIII) can be expressed in terms of principal permeability variables as

K1 = KI

(
A−D
A− D

cos2θ

)
(B.19)

K2 = KIII

(
A+D

A+ D
cos2θ

)
(B.20)

θ =
1

2
tan−1

{
A

D
− A2 −D2

KII ·D

}
(B.21)

such that A = KI+KIII
2

and D = KI−KIII
2

.

Finally, K1, K2, and θ from Eqs. (B.19-B.21), can be used to back calculate Kxx, Kyy,

and Kxy from Eqs. (B.15-B.17), and hence the complete permeability tensor is given by

K =

Kxx Kxy

Kyx Kyy

 . (B.22)
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APPENDIX C

Estimation of Closure Variables and Adsorption

Parameters

C.1 Estimation of parameters A and Pep based on experimental observations

C.1.1 Estimation of the Damköhler number A

In order to obtain an order of magnitude estimate of the Damköhler number (or the

dimensionless adsorption isotherm) A, which is given by Eq. (4.42), the values of Keq,

aβσ, and εβ need to be determined.

First, let us start with the procedure to determineKeq. TheKeq value can be obtained

from batch adsorption experiments. In general,Keq (m) is related to the linear equilibrium

partitioning coefficient (Kd (L/kg)) which is calculated using the ratio of the adsorption

capacity at equilibrium (qe (mg/g)) to the equilibrium concentration (Ce (mg/L)). For

example, Nikolaidis et al. [14] performed field experiments in their arsenic filtration study

and found Kd equal to 4300 L/kg for arsenic adsorption onto the iron filings or surface

binding.

The next step involves normalization of Kd (m3/g) with respect to the surface area

(m2/g) of the adsorbent. We continue with the same example of arsenic filtration in

ref. [14]. For this case, first, the converted Kd value is equal to 4.3 × 10−3 m3/g, and

second, the surface area of the spent filter material is 37.8 m2/g. After normalizing Kd

with the surface area of the material, we estimate Keq to be 1.14× 10−4 m.

Next, the interfacial area per unit volume (aβσ) and porosity (εβ) are generally

obtained from experimental studies. The porosity of the filtration material in ref. [14] is
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given to be 0.45. Iron filings used in heavy metal filtration studies generally have effective

particle size of 0.5-0.6 mm [188]. Hence, the zero-valent iron (stock number CC-1004,

Connelly GPM, Inc,. Chicago, IL in ref. [14]) of size 0.6 mm (US Screen Number 30) was

used to estimate the size of the filings. The characteristic length lσ of the iron filings is

0.6 mm. Further, we assume that the characteristic length l of the porous medium is at

least two times the particle size lσ. Thus, l is estimated to be approximately 1.2 mm.

Finally, on substituting the estimates of Keq and l in Eq. (4.42), A is evaluated to

be 0.095. Hence, a reasonably safe estimate of A for arsenic adsorption–based filtration

experiments can be assumed to be 0.1.

C.1.2 Estimation of the particle Péclet number Pep

In order to estimate Pep corresponding to filtration velocity in experiments, let us analyze

the pore velocity data in the arsenic filtration study in ref. [14] and use the simplified unit-

cell shown in Fig. 4.2. Note that for the estimation of Pep, which is given by Eq. (4.57),

the values of ||〈vβ〉β||, εβ, lσ, and Dβ need to be determined.

In ref. [14], the field experiments were conducted while maintaining an average flow

rate of 0.5 gallons per minute in the filter columns. The pore velocity in these columns was

noted to be 6.4 cm/min. The pore velocity, which is representative of the intrinsic phase-

average velocity, provides a good estimate of ||〈vβ〉β|| for the filtration material. Hence,

||〈vβ〉β|| is estimated to be 1.07× 10−3 m/s. As previously mentioned, the characteristic

length lσ of the iron filings is estimated to be 0.6 mm and the porosity of the filtration

material is 0.45. A typical value of Dβ for arsenic ions in aqueous phase according to

experimental studies (see Table 2 in ref. [189]) is 11.6× 10−10 m2/s.

Thus, on substituting the estimates of ||〈vβ〉β||, εβ, lσ, and Dβ in Eq. (4.57), Pep

is evaluated to be 453. Since the flow rate involved in such adsorption–based filtration

experiments is quite small, hence, a reasonably safe estimate of Pep can be assumed to

be of O(100).
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C.2 Order of magnitude estimates of closure variables

The order of magnitude estimate for a pore-scale variable φβ is represented by O (φβ).

As defined in Section 4.2.3.3, the reference length or characteristic length at pore-scale is

chosen to be l, which is the size of unit-cell shown in Fig. 4.2. This is used to obtain the

estimates for the gradient and the Laplacian of φβ as follows:

∇φβ = O
(
φβ
l

)
; ∇2φβ = O

(
φβ
l2

)
. (C.1)

On the basis of above definitions, the order of magnitude estimates of closure variables

bβ and sβ can be ascertained from closure problems I and II. We would accomplish this

by comparing the magnitudes of the known source terms with closure variable dependent

terms in these boundary-value problems.

Let us first consider problem I for obtaining the estimates of bβ:

vβ · ∇bβ + ṽβ = Dβ∇2bβ (C.2a)

B.C.1 : − nβσ · ∇bβ = nβσ, at Aβσ (C.2b)

Periodicity B.C. : bβ(r+ li) = bβ(r), i = 1, 2, 3 (C.2c)

Constraint : 〈bβ〉β = 0 . (C.2d)

Here, bβ is expected to depend on the volumetric source ṽβ in Eq. (C.2a). In this

scenario, it is important to note that ṽβ would achieve its maximum magnitude on the

solid-fluid surface due to the presence of no-slip boundary condition. This would lead to

the circumstance where an upper limit can be established for O (bβ) which can be used
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in convection-dominated regimes (Pe � 1). Thus, we can proceed to write

− 〈vβ〉β = Dβ∇2bβ, at Aβσ (C.3)

from which an estimate for bβ can be obtained after using the definitions in Eqs. (C.1)

and (4.28) as follows

bβ = O
(
vc l

Dβ
· l
)

= O (l Pe) . (C.4)

This completes the derivation for bβ estimate based on the volumetric source in Eq. (C.2a).

Further, an alternate order of magnitude estimate for bβ can be obtained after comparing

the magnitude of the surface source nβσ to ∇bβ in the boundary condition (Eq. (C.2b))

as follows

∇bβ = 1, at Aβσ (C.5)

which leads to

bβ = O (l) . (C.6)

This bβ estimate, which is independent of Pe, is more suitable for transport conditions

when Pe ≤ 1. Note that this estimate can also be obtained by comparing the two terms

on the LHS of Eq. (C.2a).

Next, let attention be directed towards closure problem II for obtaining the order
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of magnitude estimate of sβ. The problem is summarized below:

vβ · ∇sβ = Dβ∇2sβ +
aβσ
εβ

(C.7a)

B.C.1 : − nβσ · Dβ∇sβ = 1, at Aβσ (C.7b)

Periodicity B.C. : sβ(r+ li) = sβ(r), i = 1, 2, 3 (C.7c)

Constraint : 〈sβ〉β = 0 . (C.7d)

In this case, the gradient of the closure variable ∇sβ is observed to depend on the surface

source (1) in Eq. (C.7b). With the spatial variation in sβ occurring over the length-scale

l, after a simple algebraic manipulation this boundary condition yields the following

estimate for sβ

sβ = O
(

l

Dβ

)
. (C.8)

A similar estimate can be drawn by comparing the two terms on the RHS of Eq. (C.7a).

Thus, for sβ, we arrive at a unique order of magnitude given in Eq. (C.8), which is

independent of Pe.

It must be noted that in case of macroscopic variables, the order of magnitude analysis

would be based on the characteristic length L of the macroscale model instead of the

microscale length l.
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APPENDIX D

An Alternate Nondimensionalization Approach

Based on the theoretical developments in Chapter 3, where the convection, diffusion, and

adsorption phenomena are analyzed for upscaling, we proposed to use the characteristic

time for diffusion at the pore-scale for nondimensionalization of the pore-scale and volume-

averaged models in Chapter 4. However, let us explore another approach to nondimension-

alize the aforementioned models based on the characteristic time for convection at the

pore-scale.

D.1 Pore-scale model

For a unit-cell in the porous media model shown in Fig. D.1, the characteristic time for

convection at the pore-scale is given by

tcl =
l

vc
. (D.1)

The dimensionless variables needed to nondimensionalize the boundary-value problem

(Eqs. (4.1-4.5)) are as follows:

∇∗ = ∇ l , x∗ = x

l
, y∗ =

y

l
, t∗conv =

t vc
l
, v∗β =

vβ
vc
, c∗β =

cβ
cin

, and P ∗ =
l P

µ vc
. (D.2)

Here, ∇∗ is the dimensionless differential operator at the length-scale l, x∗ is the x-

direction coordinate nondimensionalized with the length-scale l, y∗ is the y-direction

coordinate nondimensionalized with the length-scale l, t∗conv is the dimensionless convection

time variable corresponding to the length-scale l, v∗β denotes the dimensionless point
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Figure D.1: Illustration of the 2-D geometry of porous media used to conduct the direct
numerical simulations (DNS). The length of the macroscopic region is assumed to be L = 100 l .

velocity of the β-phase, cin is the constant inlet concentration of species X, c∗β is the

dimensionless point concentration of species X in the β-phase, and P ∗ denotes the

dimensionless hydrodynamic fluid pressure in the β-phase.

In addition, we define the convection transport based Damköhler number Da as

follows:

Da =
Keq

l
Dβ

l
vc

(
=
Keq vc
Dβ

)
=

adsorption time scale
convection time scale

. (D.3)

The Damköhler number Da can also be expressed as

Da =
Keq

l
Dβ

l
vc

(
=
Keq

l
· vc l
Dβ

)
= A · Pe (D.4)

where A (= Keq
l
) is the diffusion transport based Damköhler number (Eq. (4.42)) and Pe

is the cell Péclet number (Eq. (4.28)).

After substituting these variables in Eqs. (4.1-4.5), the dimensionless version of the

problem can be summarized as follows:

∂c∗β
∂t∗conv

+ v∗β · ∇∗c∗β =
1

Pe
∇∗2c∗β (D.5)

B.C.1 : − nβσ · ∇∗c∗β = Da
∂c∗β
∂t∗conv

, at Aβσ (D.6)
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0 = −∇∗P ∗ + ∇∗2v∗β (D.7)

∇∗ · v∗β = 0 (D.8)

B.C.2 : v∗β = 0, at Aβσ . (D.9)

Furthermore, the computational domain shown in Fig. D.1 is subjected to the following

set of initial and (Dirichlet and Neumann type) boundary conditions:

c∗β = 0 , when t∗conv = 0 (D.10a)

c∗β = 1 , at x∗ = 0 (D.10b)
∂c∗β
∂x∗

= 0 , at x∗ =
L

l
(D.10c)

c∗β (x
∗, y∗ = 0, t∗conv) = c∗β (x

∗, y∗ = 1, t∗conv) (D.10d)

P ∗ = P ∗in (= N) , at x∗ = 0 (D.10e)

P ∗ = 0 , at x∗ =
L

l
(D.10f)

v∗β (x
∗, y∗ = 0, t∗conv) = v∗β (x

∗, y∗ = 1, t∗conv) (D.10g)

where Eqs. (D.10d) and (D.10g) represent the periodicity boundary conditions applied

at the top and bottom of the DNS model, and the pressure differential applied across the

domain due to the combination of Eqs. (D.10e) and (D.10f) has an effect such that each

unit-cell in Fig. D.1 is subjected to a unitary pressure gradient.

D.2 VAMc and VAMs

For the upscaled model of length L, the characteristic time for convection at the macroscale

is given by

tcL =
L

vc
. (D.11)
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The dimensionless variables needed to nondimensionalize the volume-averaged models

(Eqs. (4.23) and (4.27)) are as follows:

∇∗L = ∇L L , X
∗ =

x

L
, T ∗conv =

t vc
L
, v∗β =

vβ
vc
, c∗β =

cβ
cin

, and A =
aβσKeq

εβ

(
=
Keq

l

)
.

(D.12)

Here, ∇L is the differential operator at the length-scale L, ∇∗L is the dimensionless

differential operator at the length-scale L,X∗ is the x-direction coordinate nondimensionalized

with the length-scale L, and T ∗conv is the dimensionless convection time variable corresponding

to the length-scale L.

The macroscopic length L is equal to the length of a chain of N square unit cells (see

Fig. D.1) each of length l such that L = N × l. Then, on nondimensionalizing Eq. (4.23)

using the definitions given in Eq. (D.12) and performing algebraic manipulations, we

arrive at the following dimensionless form of VAMc:

∂〈c∗β〉β

∂T ∗conv
+

1

1 + A
〈v∗β〉β · ∇∗L〈c∗β〉

β +
A

(1 + A)N
uβ · ∇∗L

(
∂〈c∗β〉β

∂T ∗conv

)

=
1

N(1 + A)Pe
D∗∗β : ∇∗L∇∗L〈c∗β〉β . (D.13)

For the macroscopic model considered in this study, the length-scale associated with

the spatial variation of ∂〈cβ〉β
∂t

is L and the spatial variation in sβ takes place at the

microscopic length-scale l. In this case, the dimensionless form of the restraint given in

Eq. (4.26) would become
Da

N
v∗β � (1 + A) , (D.14)

and the mixed derivative term may be dropped from Eq. (D.13). The resulting 1-D

nondimensional macroscale equation for VAMs would be

∂〈c∗β〉β

∂T ∗conv
+

1

1 + A
〈v∗β〉β · ∇∗L〈c∗β〉

β =
1

N(1 + A)Pe
D∗∗β : ∇∗L∇∗L〈c∗β〉β . (D.15)
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Now, since different length and time scales have been used to nondimensionalize the

volume-averaged and the pore-scale models (see Eqs. (D.12) and (D.2), respectively), we

need to develop suitable length- and time-scale correlations in order to draw comparisons

between the two systems. For this, if a point x in the laboratory frame of reference is

to be located in both the coordinate systems, then based on Eqs. (D.12) and (D.2) we

deduce the following length-scale relation:

∇∗L = N ∇∗ . (D.16)

Similarly, in order to study the results at any given time t in the laboratory frame of

reference, the following dimensionless time-scale relation should be used:

T ∗conv = t∗conv /N . (D.17)

Also, the relation between the dimensionless convection and diffusion time scales at

the pore-scale is as follows:

t∗conv = t∗ × Pe (D.18)

where t∗
(
=

tDβ
l2

)
is the dimensionless time-scale for diffusion at the pore-scale.

D.3 Validation of Macroscale simulations

In this section we validate the predictions of the volume-averaged models by comparing

them with the literature results [166]. To achieve this purpose, a computational domain

consisting of 100 in-line unit cells each of side-length l was designed, as shown in Fig. D.1.

This model resembles a porous medium made of regularly arranged parallel cylinders with

the fluid flow directed perpendicular to the cylinder axis. The nondimensionalized closure

problems given by Eqs. ((4.33a-4.34d) and (4.36a-4.36d)) were solved in a unit-cell of the

described model to evaluate the effective transfer coefficients uβ (Eq. (4.38)) and D∗∗β
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Figure D.2: Comparison of the evolution of the intrinsic phase average concentration between
the present work and the literature [166]. Assuming εβ = 0.8, case (a) corresponds to A = 0,
Pep = 100, and case (b) corresponds to A = 0, Pep = 1000. The dimensionless convection
time-scale used in the present work is converted into the dimensionless diffusion time-scale by
using Eq. (D.18), which was then used for the comparison of results.

(Eqs. (4.40a-4.40b)). The upscaled equations, Eqs. (D.13) and (D.15), were solved in 1D

along a line of unit length.

The simulation codes developed for the upscaled models are validated by comparing

the results with that of Valdés Parada et al. [166] under specific circumstances. It

can be inferred from ref. [166] that in the absence of heterogeneous first-order chemical

reaction, i.e. for the passive dispersion case (φ2 = 0), the macroscale model given by Eq.

(48) of ref. [166] transforms into the standard convection-dispersion transport equation.

Analogously, in the present work, the volume-averaged models given by Eqs. (D.13) and

(D.15), reduce to that same convection-dispersion form under the no adsorption (A = 0)

condition. Thus, the data from Figs. 8a and 9a in ref. [166] corresponding to the no-slip

boundary condition is used for validation of the code developed for the present work.

In this study, the average concentration was tested at the following positions: (a) near

the entrance, at x∗ = 4.5, (b) near the middle, at x∗ = 49.5, and (c) near the exit, at

x∗ = 94.5, of the computational domain shown in Fig. D.1. It is important to note that

the concentration predictions in ref. [166] are made using the model formulations based
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on the dimensionless diffusion time-scale. Therefore, in the present work, Eq. (D.18) is

used to convert the dimensionless convection time-scale into the dimensionless diffusion

time-scale for directly comparing the evolution of the intrinsic average concentration with

that in ref. [166].

As reported in Fig. D.2, the concentration predictions made using the current code

for both Pep of O(100) and O(1000) are in excellent agreement with the literature [166],

which helps reinforce the accuracy of the proposed convection time-scale based model

formulations. The minor divergence observed near the onset of the concentration profiles

at position x∗ = 4.5 maybe due to the use of compound order of magnitude estimate

proposed for bβ in ref. [166]. On proceeding farther from the inlet and with increasing

time, the difference between the intrinsic phase average concentration predictions occurring

due to the above-mentioned estimate and our estimates in Eqs. (4.31) and (4.32) becomes

barely noticeable.

Thus, it can be concluded that the convection transport based Damköhler numberDa,

which signifies the ratio of adsorption to convection time scales, provides an alternative

approach to study the mass transport phenomena occurring at the pore-scale in porous

water filters.
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APPENDIX E

Supplementary Material for Experiments

E.1 Supplementary data for column-flow experiments

As described in Chapter 5, three trials of column-flow experiments were conducted in

order to evaluate the performance of functionalized zeolite materal. The experimental

data for evolution of the effluent concentration with respect to time is tabulated in Table

E.1. The influent concentration in the experiments was as follows: (1) 47.81 mg/L in

Trial 1, (2) 51.31 mg/L in Trial 2, and (3) 50.60 mg/L in Trial 3.

We know that artificially prepared materials suffer from numerous imperfections,

therefore, it is necessary to conduct multiple experiment trials in order to account for

the random sampling errors that might occur during the tests. In our study, for each

column-flow experiment, fresh adsorbent material was taken from the same filter bag that

was employed in a previous filtration study. Each of the trial experiments was carefully

conducted under as identical lab conditions as possible and the effluent concentration

readings were taken at stipulated intervals in an accurate manner. For the three given

adsorbent samples, the t-test was performed at every measurement time-step in order

to estimate the margin of error at that given point in time. An example of the margin

of error calculation is as follows. Let us consider the effluent concentration data from

the three trials after 405 minutes of elapsed time, i.e., 21.01 mg/L, 10.22 mg/L, and

6.10 mg/L. At this given time, the mean of the effluent concentration is 12.44 mg/L

and the standard deviation of the samples is 7.70 mg/L. For a two-tailed t-test with

95% confidence interval, the t-statistic value is 4.303 for 2 (= 3− 1) degrees of freedom.

Finally, the margin of error can be calculated by finding the product of t-statistic value
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(= 4.303) and the ratio of standard deviation (= 7.70 mg/L) to the square root of the

number of samples (= 3). Thus, the margin of error is evaluated to be 19.13 mg/L.

Overall, the effluent concentration at this time-step is 12.44 ± 19.13 mg/L. It can be

noted that the margin of error exceeds the average concentration value primarily due to

the large standard deviation involved at this time-step. The margin of error at other time

steps can similarly be calculated.
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Table E.1: Evolution of the effluent concentration with respect to time in the column-flow
experiments.

Effluent concentration (mg/L)Elapsed time (min)
Trial 1 Trial 2 Trial 3

15 0.83 1.37 0.20
30 0.66 0.51 -0.20
45 0.83 0.33 -0.20
60 0.66 0.16 0.00
75 0.83 0.33 -0.10
90 0.83 0.51 -0.10
105 1.00 0.33 0.00
120 1.00 0.51 0.00
135 1.17 0.33 -0.10
150 1.34 0.51 0.00
165 1.34 0.16 0.00
180 1.85 0.51 -0.20
195 2.19 0.85 0.40
210 2.70 0.51 0.10
225 3.38 0.51 0.30
240 4.39 0.51 0.80
255 6.09 0.85 0.40
270 7.96 1.20 0.90
285 8.80 1.03 2.30
300 9.82 1.89 1.80
315 12.53 1.89 2.40
330 14.06 2.24 2.70
345 15.59 2.07 6.30
360 17.11 4.32 3.90
375 18.30 5.53 4.70
390 20.33 6.58 5.40
405 21.01 10.22 6.10
420 21.69 5.89 6.90
435 22.03 8.48 7.80
450 23.90 11.95 8.40
465 24.40 10.56 9.30
480 26.52 9.52 10.40
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Figure E.1: (a) The lab scale filter box with filter bags, (b) an artificial mesh-case used to
store the zeolite material, and (c) the mesh-case positioned into the third slot of the filter box.

E.2 Lab scale filtration experiment

In addition to the column-flow experiments, a lab scale experiment was conducted by

using a filtration box designed1 and built by Kieser & Associates in collaboration with

the Silva Lab. This horizontal-flow system, as shown in Fig. E.1a, comprised of a

polyethylene plastic box with pipes to collect and store the influent, and combinations

of filter bags and holders to filter the contaminated solution. An artificial mesh-case, as

shown in Fig. E.1b, constructed out of stiff steel mesh screens of size US 20 mesh was

used to store the zeolite material. The use of stiff screens helped in maintaining an even

thickness of the case and minimized any structural deformations that occurred during

the flow of solution through the adsorbent. The case was inserted into the third slot from

the inlet out of the 5 slots in the filter box. Also, an external layer of woven textile cloth

was attached to the front and back faces of this mesh box to prevent any finer particles

from being washed away during the experiment. The filtration material was poured into

the mesh-case and allowed to settle in an uncompacted manner. Due to the deployment

of the material in previous field tests, any resultant large chunks were manually crushed

before being filled into the holder. The average thickness of the filled up mesh-case was

29.3 ± 1.4 mm. The volumetric porosity of the zeolite filtration material was evaluated
1Any reproduction of the lab scale filter box photographs herein is prohibited without express consent

of the Great Lakes Protection Fund.
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Figure E.2: The setup for the lab scale filtration experiment.

to be 49.6%. The characteristic size of the adsorbent particles was 0.72 mm.

A tank of capacity 20 L to store and supply the P spiked solution was continuously

refilled at regular intervals. Further, a network of tubes and flow regulator valve reduced

the flow rate of 12V DC pump such that the influent from the reservoir was injected into

the filter box at a constant flow rate of 3.0 mL/s, as shown in Fig. E.2. The influent

concentration for the experiment was 0.21± 0.01 mg/L. The effluent samples were taken

at 1 inch from the exit face of the mesh-case at the intervals of 15 minutes over a period

of 300 minutes. The filtered solution generated over the course of 5-hour experiment was

collected in a large reservoir.

2.5 mL aliquot of each effluent sample was analyzed for soluble reactive phosphorus

(SRP) by using the UV-VIS Spectrophotometer (Shimadzu UV-2600). For detection

of P, the spectrophotometer measured the absorption of light by the sample at 885

nm wavelength. The experimental data for evolution of the effluent concentration with

respect to time is tabulated in Table E.2.
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Table E.2: Evolution of the effluent concentration with respect to time in the lab scale filtration
experiment.

Elapsed time (min) Effluent concentration (mg/L)
15 0.10
30 0.09
45 0.08
60 0.06
75 0.05
90 0.04
105 0.04
120 0.03
135 0.03
150 0.02
165 0.02
180 0.02
195 0.02
210 0.02
225 0.02
240 0.02
255 0.04
270 0.06
285 0.05
300 0.03
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Figure E.3: The effluent concentration data recorded from the lab scale filtration experiment
and concentration predictions from the volume-averaged models, VAMs and VAMc.

E.3 Results and discussion

The effluent concentration data plotted in Fig. E.3 shows the experimental values (curve

with black solid circles) and concentration predictions from VAMs (red line) and VAMc

(blue line) models. As shown in Fig. E.3, the functionalized zeolite was successfully able

to remove the majority of phosphorus from the influent for nearly 225 minutes. After

this, the number of vacant (or active) adsorption sites in the (previously used) filtration

material may have started to decline, which explains the reduction in removal efficiency

post 225 minutes.

Similar to the results obtained from the column-flow experiments, the effluent concentr-

ation predictions from the volume-averaged models (VAMs and VAMc) show a large

difference when compared to the lab scale results. If we closely observe the concentration
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Figure E.4: A closer view of the effluent concentration predictions obtained from the volume-
averaged models, VAMs and VAMc.

curves obtained from the upscaled models in Fig. E.4, we again note the following points:

(1) the shape of these convection-dispersion equation-based curves is in accordance with

those observed in other adsorption studies [13, 14, 175], and (2) even though the VAMc

and VAMs curves remain close to each other, they are still distinguishable, which suggests

that VAMc does provide some improvement over VAMs in this case.

The major reason behind the discrepancy observed between the experimental results

and VAM predictions is the lack of adherence to the time-scale constraint given in

Eq. (3.52). An extensive discussion based on this topic is presented in Section 5.4.
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